Tagged with #gatk-3-1
0 documentation articles | 3 announcements | 0 forum discussions


No posts found with the requested search criteria.
Comments (21)

This may seem crazy considering we released the big 3.0 version not two weeks ago, but yes, we have a new version for you already! It's a bit of a special case because this release is all about the hardware-based optimizations we had previously announced. What we hadn't announced yet was that this is the fruit of a new collaboration with a team at Intel (which you can read more about here), so we were waiting for everyone to be ready for the big reveal.


Intel inside GATK

So basically, the story is that we've started collaborating with the Intel Bio Team to enable key parts of the GATK to run more efficiently on certain hardware configurations. For our first project together, we tackled the PairHMM algorithm, which is responsible for a large proportion of the runtime of HaplotypeCaller analyses. The resulting optimizations, which are the main feature in version 3.1, produce significant speedups for HaplotypeCaller runs on a wide range of hardware.

We will continue working with Intel to further improve the performance of GATK tools that have historically been afflicted with performance issues and long runtimes (hello BQSR). As always, we hope these new features will make your life easier, and we welcome your feedback in the forum!

In practice

Note that these optimizations currently work on Linux systems only, and will not work on Mac or Windows operating systems. In the near future we will add support for Mac OS. We have no plans to add support for Windows since the GATK itself does not run on Windows.

Please note also that to take advantage of these optimizations, you need to opt-in by adding the following flag to your GATK command: -pairHMM VECTOR_LOGLESS_CACHING.

Here is a handy little table of the speedups you can expect depending on the hardware and operating system you are using. The configurations given here are the minimum requirements for benefiting from the expected speedup ranges shown in the third column. Keep in mind that these numbers are based on tests in controlled conditions; in the wild, your mileage may vary.

Linux kernel version Architecture / Processor Expected speedup Instruction set
Any 64-bit Linux Any x86 64-bit 1-1.5x Non-vector
Linux 2.6 or newer Penryn (Core 2 or newer) 1.3-1.8x SSE 4.1
Linux 2.6.30 or newer SandyBridge (i3, i5, i7, Xeon E3, E5, E7 or newer) 2-2.5x AVX

To find out exactly which processor is in your machine, you can run this command in the terminal:

$ cat /proc/cpuinfo | grep "model name"                                                                                    
model name  : Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz
model name  : Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz
model name  : Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz
model name  : Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz
model name  : Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz
model name  : Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz
model name  : Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz
model name  : Intel(R) Core(TM) i7-2600 CPU @ 3.40GHz

In this example, the machine has 4 cores (8-threads), so you see the answer 8 times. With the model name (here i7-2600) you can look up your hardware's relevant capabilities in the Wikipedia page on vector extensions.

Alternatively, Intel has provided us with some links to lists of processors categorized by architecture, in which you can look up your hardware:

Penryn processors

  • http://ark.intel.com/products/codename/26543/Penryn
  • http://ark.intel.com/products/codename/24736/Wolfdale
  • http://ark.intel.com/products/codename/26555/Harpertown
  • http://ark.intel.com/products/codename/25006/Dunnington

Sandy Bridge processors

  • http://ark.intel.com/products/codename/29900/Sandy-Bridge?wapkw=sandy+bridge+processors

Finally, a few notes to clarify some concepts regarding Linux kernels vs. distributions and processors vs. architectures:

  • SandyBridge and Penryn are microarchitectures; essentially, these are sets of instructions built into the CPU. Core 2, core i3, i4, i7, Xeon e3, e5, e7 are the processors that will implement a specific architecture to make use of the relevant improvements (see table above).

  • The Linux kernel has no connection with Linux distribution (e.g. Ubuntu, RedHat etc). Any distribution can use any kernel they want. There are "default kernels" shipped with each distribution, but that's beyond the scope of this article to cover (there are at least 300 Linux distributions out there). But you can always install whatever kernel version you want.

  • The kernel version 2.6.30 was released in 2009, so we expect every sane person or IT out there to be using something better than this.

Comments (0)

We're very excited to announce that we have started collaborating with a team from Intel (yep, that Intel) to optimize key parts of the GATK code to make it run faster. The first fruits of this collaboration --a set of hardware-based optimizations for the PairHMM algorithm in HaplotypeCaller-- are available as of today in version 3.1 of the GATK. Please see the release notes and version highlights in the Version History section of the Guide for details.

Of course this is only the beginning, and we're looking forward to delivering more performance improvements for various other GATK tools moving forward as part of this collaboration.

What's really cool is that this collaboration extends beyond our little GATK team; the Intel Bio Team is also going to be working with other groups at the Broad Institute to make their software run faster as well, all with the goal of accelerating scientific research and discovery.

For more details and background information, see the Bio-IT World story here: http://www.bio-itworld.com/2014/3/20/broad-intel-announce-speed-improvements-gatk-powered-by-intel-optimizations.html

Comments (0)

GATK 3.1 was released on March 18, 2014. Highlights are listed below. Read the detailed version history overview here: http://www.broadinstitute.org/gatk/guide/version-history


Haplotype Caller

  • Added new capabilities to the Haplotype Caller to use hardware-based optimizations. Can be enabled with --pair_hmm_implementation VECTOR_LOGLESS_CACHING. Please see the 3.1 Version Highlights for more details about expected speed ups and some background on the collaboration that made these possible.
  • Fixed bugs in computing the weights of edges in the assembly graph. This was causing bad genotypes to be output when running the Haplotype Caller over multiple samples simultaneously (as opposed to creating gVCFs in the new recommended pipeline, which was working as expected).

Variant Recalibrator

  • Fixed issue where output could be non-deterministic with very large data sets.

CalculateGenotypePosteriors

  • Fixed several bugs where bad input were causing the tool to crash instead of gracefully exiting with an error message.

Miscellaneous

  • RandomlySplitVariants can now output splits comprised of more than 2 output files.
  • FastaAlternateReferenceMaker can now output heterozygous sites using IUPAC ambiguity encoding.
  • Picard, Tribble, and Variant jars updated to version 1.109.1722.
No posts found with the requested search criteria.