Tagged with #bundle
4 documentation articles | 0 announcements | 0 forum discussions


Comments (15)

New WGS and WEx CEU trio BAM files

We have sequenced at the Broad Institute and released to the 1000 Genomes Project the following datasets for the three members of the CEU trio (NA12878, NA12891 and NA12892):

  • WEx (150x) sequence
  • WGS (>60x) sequence

This is better data to work with than the original DePristo et al. BAMs files, so we recommend you download and analyze these files if you are looking for complete, large-scale data sets to evaluate the GATK or other tools.

Here's the rough library properties of the BAMs:

CEU trio BAM libraries

These data files can be downloaded from the 1000 Genomes DCC

NA12878 Datasets from DePristo et al. (2011) Nature Genetics

Here are the datasets we used in the GATK paper cited below.

DePristo M, Banks E, Poplin R, Garimella K, Maguire J, Hartl C, Philippakis A, del Angel G, Rivas MA, Hanna M, McKenna A, Fennell T, Kernytsky A, Sivachenko A, Cibulskis K, Gabriel S, Altshuler D and Daly, M (2011). A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nature Genetics. 43:491-498.

Some of the BAM and VCF files are currently hosted by the NCBI: ftp://ftp-trace.ncbi.nih.gov/1000genomes/ftp/technical/working/20101201_cg_NA12878/

  • NA12878.hiseq.wgs.bwa.recal.bam -- BAM file for NA12878 HiSeq whole genome
  • NA12878.hiseq.wgs.bwa.raw.bam Raw reads (in BAM format, see below)
  • NA12878.ga2.exome.maq.recal.bam -- BAM file for NA12878 GenomeAnalyzer II whole exome (hg18)
  • NA12878.ga2.exome.maq.raw.bam Raw reads (in BAM format, see below)
  • NA12878.hiseq.wgs.vcf.gz -- SNP calls for NA12878 HiSeq whole genome (hg18)
  • NA12878.ga2.exome.vcf.gz -- SNP calls for NA12878 GenomeAnalyzer II whole exome (hg18)
  • BAM files for CEU + NA12878 whole genome (b36). These are the standard BAM files for the 1000 Genomes pilot CEU samples plus a 4x downsampled version of NA12878 from the pilot 2 data set, available in the DePristoNatGenet2011 directory of the GSA FTP Server
  • SNP calls for CEU + NA12878 whole genome (b36) are available in the DePristoNatGenet2011 directory of the GSA FTP Server
  • Crossbow comparison SNP calls are available in the DePristoNatGenet2011 directory of the GSA FTP Server as crossbow.filtered.vcf. The raw calls can be viewed by ignoring the FILTER field status
  • whole_exome_agilent_designed_120.Homo_sapiens_assembly18.targets.interval_list -- targets used in the analysis of the exome capture data

Please note that we have not collected the indel calls for the paper, as these are only used for filtering SNPs near indels. If you want to call accurate indels, please use the new GATK indel caller in the Unified Genotyper.

Warnings

Both the GATK and the sequencing technologies have improved significantly since the analyses performed in this paper.

  • If you are conducting a review today, we would recommend that the newest version of the GATK, which performs much better than the version described in the paper. Moreover, we would also recommend one use the newest version of Crossbow as well, in case they have improved things. The GATK calls for NA12878 from the paper (above) will give one a good idea what a good call set looks like whole-genome or whole-exome.

  • The data sets used in the paper are no longer state-of-the-art. The WEx BAM is GAII data aligned with MAQ on hg18, but a state-of-the-art data set would use HiSeq and BWA on hg19. Even the 64x HiSeq WG data set is already more than one year old. For a better assessment, we would recommend you use a newer data set for these samples, if you have the capacity to generate it. This applies less to the WG NA12878 data, which is pretty good, but the NA12878 WEx from the paper is nearly 2 years old now and notably worse than our most recent data sets.

Obviously, this was an annoyance for us as well, as it would have been nice to use a state-of-the-art data set for the WEx. But we decided to freeze the data used for analysis to actually finish this paper.

How do I get the raw FASTQ file from a BAM?

If you want the raw, machine output for the data analyzed in the GATK framework paper, obtain the raw BAM files above and convert them from SAM to FASTQ using the Picard tool SamToFastq.

Comments (3)

This document describes the resource datasets and arguments to use in the two steps of VQSR (i.e. the successive application of VariantRecalibrator and ApplyRecalibration), based on our work with human genomes.

Note that VQSR must be run twice in succession in order to build a separate error model for SNPs and INDELs (see the VQSR documentation for more details).

These recommendations are valid for use with calls generated by both the UnifiedGenotyper and HaplotypeCaller. In the past we made a distinction in how we processed the calls from these two callers, but now we treat them the same way. These recommendations will probably not work properly on calls generated by other (non-GATK) callers.

Resource datasets

The human genome training, truth and known resource datasets mentioned in this document are all available from our resource bundle.

If you are working with non-human genomes, you will need to find or generate at least truth and training resource datasets with properties corresponding to those described below. To generate your own resource set, one idea is to first do an initial round of SNP calling and only use those SNPs which have the highest quality scores. These sites which have the most confidence are probably real and could be used as truth data to help disambiguate the rest of the variants in the call set. Another idea is to try using several SNP callers in addition to the UnifiedGenotyper or HaplotypeCaller, and use those sites which are concordant between the different methods as truth data. In either case, you'll need to assign your set a prior likelihood that reflects your confidence in how reliable it is as a truth set. We recommend Q10 as a starting value, which you can then experiment with to find the most appropriate value empirically. There are many possible avenues of research here. Hopefully the model reporting plots that are generated by the recalibration tools will help facilitate this experimentation.

Resources for SNPs

  • True sites training resource: HapMap

    This resource is a SNP call set that has been validated to a very high degree of confidence. The program will consider that the variants in this resource are representative of true sites (truth=true), and will use them to train the recalibration model (training=true). We will also use these sites later on to choose a threshold for filtering variants based on sensitivity to truth sites. The prior likelihood we assign to these variants is Q15 (96.84%).

  • True sites training resource: Omni

    This resource is a set of polymorphic SNP sites produced by the Omni geno- typing array. The program will consider that the variants in this resource are representative of true sites (truth=true), and will use them to train the recalibration model (training=true). The prior likelihood we assign to these variants is Q12 (93.69%).

  • Non-true sites training resource: 1000G
    This resource is a set of high-confidence SNP sites produced by the 1000 Genomes Project. The program will consider that the variants in this re- source may contain true variants as well as false positives (truth=false), and will use them to train the recalibration model (training=true). The prior likelihood we assign to these variants is Q10 (%). 17

  • Known sites resource, not used in training: dbSNP
    This resource is a call set that has not been validated to a high degree of confidence (truth=false). The program will not use the variants in this resource to train the recalibration model (training=false). However, the program will use these to stratify output metrics such as Ti/Tv ratio by whether variants are present in dbsnp or not (known=true). The prior likelihood we assign to these variants is Q2 (36.90%).

Resources for Indels

  • Known and true sites training resource: Mills
    This resource is an Indel call set that has been validated to a high degree of confidence. The program will consider that the variants in this resource are representative of true sites (truth=true), and will use them to train the recalibration model (training=true). The prior likelihood we assign to these variants is Q12 (93.69%).

VariantRecalibrator

The variant quality score recalibrator builds an adaptive error model using known variant sites and then applies this model to estimate the probability that each variant is a true genetic variant or a machine artifact. One major improvement from previous recommended protocols is that hand filters do not need to be applied at any point in the process now. All filtering criteria are learned from the data itself.

Common, base command line

java -Xmx4g -jar GenomeAnalysisTK.jar \
   -T VariantRecalibrator \
   -R path/to/reference/human_g1k_v37.fasta \
   -input raw.input.vcf \
   -recalFile path/to/output.recal \
   -tranchesFile path/to/output.tranches \
   -nt 4 \
   [SPECIFY TRUTH AND TRAINING SETS] \
   [SPECIFY WHICH ANNOTATIONS TO USE IN MODELING] \
   [SPECIFY WHICH CLASS OF VARIATION TO MODEL] \

SNP specific recommendations

For SNPs we use both HapMap v3.3 and the Omni chip array from the 1000 Genomes Project as training data. In addition we take the highest confidence SNPs from the project's callset. These datasets are available in the GATK resource bundle.

Arguments for VariantRecalibrator command:

   -resource:hapmap,known=false,training=true,truth=true,prior=15.0 hapmap_3.3.b37.sites.vcf \
   -resource:omni,known=false,training=true,truth=true,prior=12.0 1000G_omni2.5.b37.sites.vcf \
   -resource:1000G,known=false,training=true,truth=false,prior=10.0 1000G_phase1.snps.high_confidence.vcf \
   -resource:dbsnp,known=true,training=false,truth=false,prior=2.0 dbsnp.b37.vcf \
   -an QD -an MQ -an MQRankSum -an ReadPosRankSum -an FS -an DP -an InbreedingCoeff \
   -mode SNP \

Please note that these recommendations are formulated for whole-genome datasets. For exomes, we do not recommend using DP for variant recalibration (see below for details of why).

Note also that, for the above to work, the input vcf needs to be annotated with the corresponding values (QD, FS, DP, etc.). If any of these values are somehow missing, then VariantAnnotator needs to be run first so that VariantRecalibration can run properly.

Also, using the provided sites-only truth data files is important here as parsing the genotypes for VCF files with many samples increases the runtime of the tool significantly.

You may notice that these recommendations no longer include the --numBadVariants argument. That is because we have removed this argument from the tool, as the VariantRecalibrator now determines the number of variants to use for modeling "bad" variants internally based on the data.

Important notes about annotations

Some of these annotations might not be the best for your particular dataset.

Depth of coverage (the DP annotation invoked by Coverage) should not be used when working with exome datasets since there is extreme variation in the depth to which targets are captured! In whole genome experiments this variation is indicative of error but that is not the case in capture experiments.

Additionally, the UnifiedGenotyper produces a statistic called the HaplotypeScore which should be used for SNPs. This statistic isn't necessary for the HaplotypeCaller because that mathematics is already built into the likelihood function itself when calling full haplotypes.

The InbreedingCoeff is a population level statistic that requires at least 10 samples in order to be computed. For projects with fewer samples please omit this annotation from the command line.

Important notes for exome capture experiments

In our testing we've found that in order to achieve the best exome results one needs to use an exome SNP and/or indel callset with at least 30 samples. For users with experiments containing fewer exome samples there are several options to explore:

  • Add additional samples for variant calling, either by sequencing additional samples or using publicly available exome bams from the 1000 Genomes Project (this option is used by the Broad exome production pipeline)
  • Use the VQSR with the smaller variant callset but experiment with the precise argument settings (try adding --maxGaussians 4 to your command line, for example)

Indel specific recommendations

When modeling indels with the VQSR we use a training dataset that was created at the Broad by strictly curating the (Mills, Devine, Genome Research, 2011) dataset as as well as adding in very high confidence indels from the 1000 Genomes Project. This dataset is available in the GATK resource bundle.

Arguments for VariantRecalibrator:

   --maxGaussians 4 \
   -resource:mills,known=false,training=true,truth=true,prior=12.0 Mills_and_1000G_gold_standard.indels.b37.sites.vcf \
   -resource:dbsnp,known=true,training=false,truth=false,prior=2.0 dbsnp.b37.vcf \
   -an QD -an DP -an FS -an ReadPosRankSum -an MQRankSum -an InbreedingCoeff \
   -mode INDEL \

Note that indels use a different set of annotations than SNPs. Most annotations related to mapping quality have been removed since there is a conflation with the length of an indel in a read and the degradation in mapping quality that is assigned to the read by the aligner. This covariation is not necessarily indicative of being an error in the same way that it is for SNPs.

You may notice that these recommendations no longer include the --numBadVariants argument. That is because we have removed this argument from the tool, as the VariantRecalibrator now determines the number of variants to use for modeling "bad" variants internally based on the data.

ApplyRecalibration

The power of the VQSR is that it assigns a calibrated probability to every putative mutation in the callset. The user is then able to decide at what point on the theoretical ROC curve their project wants to live. Some projects, for example, are interested in finding every possible mutation and can tolerate a higher false positive rate. On the other hand, some projects want to generate a ranked list of mutations that they are very certain are real and well supported by the underlying data. The VQSR provides the necessary statistical machinery to effectively apply this sensitivity/specificity tradeoff.

Common, base command line

 
 java -Xmx3g -jar GenomeAnalysisTK.jar \
   -T ApplyRecalibration \
   -R reference/human_g1k_v37.fasta \
   -input raw.input.vcf \
   -tranchesFile path/to/input.tranches \
   -recalFile path/to/input.recal \
   -o path/to/output.recalibrated.filtered.vcf \
   [SPECIFY THE DESIRED LEVEL OF SENSITIVITY TO TRUTH SITES] \
   [SPECIFY WHICH CLASS OF VARIATION WAS MODELED] \
 

SNP specific recommendations

For SNPs we used HapMap 3.3 and the Omni 2.5M chip as our truth set. We typically seek to achieve 99.5% sensitivity to the accessible truth sites, but this is by no means universally applicable: you will need to experiment to find out what tranche cutoff is right for your data. Generally speaking, projects involving a higher degree of diversity in terms of world populations can expect to achieve a higher truth sensitivity than projects with a smaller scope.

   --ts_filter_level 99.5 \
   -mode SNP \

Indel specific recommendations

For indels we use the Mills / 1000 Genomes indel truth set described above. We typically seek to achieve 99.0% sensitivity to the accessible truth sites, but this is by no means universally applicable: you will need to experiment to find out what tranche cutoff is right for your data. Generally speaking, projects involving a higher degree of diversity in terms of world populations can expect to achieve a higher truth sensitivity than projects with a smaller scope.

   --ts_filter_level 99.0 \
   -mode INDEL \
Comments (67)

We make various files available for public download from the GSA FTP server, such as the GATK resource bundle and presentation slides. We also maintain a public upload feature for processing bug reports from users.

There are two logins to choose from depending on whether you want to upload or download something:

Downloading

location: ftp.broadinstitute.org
username: gsapubftp-anonymous
password: <blank>

Uploading

location: ftp.broadinstitute.org
username: gsapubftp
password: 5WvQWSfi
Comments (47)

1. Obtaining the bundle

Inside of the Broad, the latest bundle will always be available in:

/humgen/gsa-hpprojects/GATK/bundle/current

with a subdirectory containing for each reference sequence and associated data files.

External users can download these files (or corresponding .gz versions) from the GSA FTP Server in the directory bundle. Gzipped files should be unzipped before attempting to use them. Note that there is no "current link" on the FTP; users should download the highest numbered directory under current (this is the most recent data set).

2. b37 Resources: the Standard Data Set

  • Reference sequence (standard 1000 Genomes fasta) along with fai and dict files
  • dbSNP in VCF. This includes two files:
    • The most recent dbSNP release
    • This file subsetted to only sites discovered in or before dbSNPBuildID 129, which excludes the impact of the 1000 Genomes project and is useful for evaluation of dbSNP rate and Ti/Tv values at novel sites.
  • HapMap genotypes and sites VCFs
  • OMNI 2.5 genotypes for 1000 Genomes samples, as well as sites, VCF
  • The current best set of known indels to be used for local realignment (note that we don't use dbSNP for this anymore); use both files:
    • 1000G_phase1.indels.b37.vcf (currently from the 1000 Genomes Phase I indel calls)
    • Mills_and_1000G_gold_standard.indels.b37.sites.vcf
  • A large-scale standard single sample BAM file for testing:
    • NA12878.HiSeq.WGS.bwa.cleaned.recal.hg19.20.bam containing ~64x reads of NA12878 on chromosome 20
    • The results of the latest UnifiedGenotyper with default arguments run on this data set (NA12878.HiSeq.WGS.bwa.cleaned.recal.hg19.20.vcf)

Additionally, these files all have supplementary indices, statistics, and other QC data available.

3. hg18 Resources: lifted over from b37

Includes the UCSC-style hg18 reference along with all lifted over VCF files. The refGene track and BAM files are not available. We only provide data files for this genome-build that can be lifted over "easily" from our master b37 repository. Sorry for whatever inconvenience that this might cause.

Also includes a chain file to lift over to b37.

4. b36 Resources: lifted over from b37

Includes the 1000 Genomes pilot b36 formated reference sequence (human_b36_both.fasta) along with all lifted over VCF files. The refGene track and BAM files are not available. We only provide data files for this genome-build that can be lifted over "easily" from our master b37 repository. Sorry for whatever inconvenience that this might cause.

Also includes a chain file to lift over to b37.

5. hg19 Resources: lifted over from b37

Includes the UCSC-style hg19 reference along with all lifted over VCF files.

No posts found with the requested search criteria.
No posts found with the requested search criteria.