GATK Best Practices
Recommended workflows for variant analysis with GATK



About the RNAseq Variant Analysis workflow

This is our recommended workflow for calling variants in RNAseq data from single samples, in which all steps are performed per-sample. In future we will provide cohort analysis recommendations, but these are not yet available.

The workflow is divided in two main sections that are meant to be performed sequentially:

  • Data pre-processing: from raw RNAseq sequence reads (FASTQ files) to analysis-ready reads (BAM files)
  • Variant discovery: from reads (BAM files) to variants (VCF files)

Compared to the DNAseq Best Practices, the key adaptations for analyzing RNAseq focus on handling splice junctions correctly, which involves specific mapping and pre-processing procedures, as well as some new functionality in the HaplotypeCaller.




Do you have a question on this topic that wasn't addressed anywhere here? Please ask it here in the forum.

Pre-processing Overview

When you receive sequence data from your sequencing provider (whether it is an in-house service or a commercial company), the data is typically in a raw state (one or several FASTQ files) that is not immediately usable for analysis with the GATK. Even if you receive a BAM file (i.e. a file in which the reads have been aligned to a reference genome) you still need to apply some processing steps to your data to make it suitable for variant calling analysis. This section describes the pre-processing steps that are necessary in order to prepare your data for analysis, starting with FASTQ files and ending in an analysis-ready BAM file.

The steps involved are:

  1. Mapping and Marking Duplicates
  2. Split'N'Trim + Reassign Mapping Quality
  3. Local Realignment Around Indels
  4. Base Quality Score Recalibration (BQSR)

These steps should be performed in the order shown above. Please note that Indel Realignment is optional for RNAseq data. However, Base Recalibration is likely to improve the quality of your results and should not be skipped.




Do you have a question on this topic that wasn't addressed anywhere here? Please ask it here in the forum.

Mapping and Marking Duplicates

The Best Practices variant discovery workflow depends on having sequence data in the form of reads that are aligned to a reference genome. So the very first step is of course to map your reads to the reference to produce a file in SAM/BAM format. For RNAseq, we evaluated all the major software packages that are specialized in RNAseq alignment, and we found that we were able to achieve the highest sensitivity to both SNPs and, importantly, indels, using STAR aligner. Specifically, we use the STAR 2-pass method was described by Engström et al., 2013 (see page 43 of the Supplemental text for full protocol details). In brief, in the STAR 2-pass approach, splice junctions detected in a first alignment run are used to guide the final alignment.

Then you can proceed to mark duplicates. The rationale here is that during the sequencing process, the same DNA molecules can be sequenced several times. The resulting duplicate reads are not informative and should not be counted as additional evidence for or against a putative variant. The duplicate marking process (sometimes called **dedupping** in bioinformatics slang) identifies these reads as such so that the GATK tools know they should ignore them. At this point you should also ensure that your reads are sorted in the proper order (by coordinate).

These steps are performed with tools such as Samtools and Picard that are not part of GATK, so we don't provide detailed documentation of all the options available. For more details, please see those tools' respective documentations.


Presentations


External Tool Documentation


Methods

No posts found with the requested search criteria.


Do you have a question on this topic that wasn't addressed anywhere here? Please ask it here in the forum.

Split'N'Trim + ReassignMappingQualities

Once the reads are mapped and dedupped, you need to apply an additional processing step that is necessary to correctly handle splice junctions. This involves splitting reads into exon segments (getting rid of Ns but maintaining grouping information) and hard-clipping any sequences overhanging into the intronic regions.

At this step we also add one important tweak compared to the DNA Best Practices: you need to reassign mapping qualities to a baseline value, because STAR assigns good alignments a MAPQ of 255, which technically means “unknown” and is therefore meaningless to GATK.



Methods

No posts found with the requested search criteria.


Do you have a question on this topic that wasn't addressed anywhere here? Please ask it here in the forum.

Local Realignment around Indels

The algorithms that are used in the initial mapping step tend to produce various types of artifacts. For example, reads that align on the edges of indels often get mapped with mismatching bases that might look like evidence for SNPs, but are actually mapping artifacts. The realignment process identifies the most consistent placement of the reads relative to the indel in order to clean up these artifacts. It occurs in two steps: first the program identifies intervals that need to be realigned, then in the second step it determines the optimal consensus sequence and performs the actual realignment of reads.

This step is optional for RNAseq data. It can produce some minor improvements to your results, but due to the computational costs, we don't recommend doing it unless you have spare compute power and time, and want the absolute best possible results.



Methods

Comments (109)

Realigner Target Creator

For a complete, detailed argument reference, refer to the GATK document page here.


Indel Realigner

For a complete, detailed argument reference, refer to the GATK document page here.


Running the Indel Realigner only at known sites

While we advocate for using the Indel Realigner over an aggregated bam using the full Smith-Waterman alignment algorithm, it will work for just a single lane of sequencing data when run in -knownsOnly mode. Novel sites obviously won't be cleaned up, but the majority of a single individual's short indels will already have been seen in dbSNP and/or 1000 Genomes. One would employ the known-only/lane-level realignment strategy in a large-scale project (e.g. 1000 Genomes) where computation time is severely constrained and limited. We modify the example arguments from above to reflect the command-lines necessary for known-only/lane-level cleaning.

The RealignerTargetCreator step would need to be done just once for a single set of indels; so as long as the set of known indels doesn't change, the output.intervals file from below would never need to be recalculated.

 java -Xmx1g -jar /path/to/GenomeAnalysisTK.jar \
  -T RealignerTargetCreator \
  -R /path/to/reference.fasta \
  -o /path/to/output.intervals \
  -known /path/to/indel_calls.vcf

The IndelRealigner step needs to be run on every bam file.

java -Xmx4g -Djava.io.tmpdir=/path/to/tmpdir \
  -jar /path/to/GenomeAnalysisTK.jar \
  -I <lane-level.bam> \
  -R <ref.fasta> \
  -T IndelRealigner \
  -targetIntervals <intervalListFromStep1Above.intervals> \
  -o <realignedBam.bam> \
  -known /path/to/indel_calls.vcf
  --consensusDeterminationModel KNOWNS_ONLY \
  -LOD 0.4

Tutorials

Comments (8)

Objective

Perform local realignment around indels to correct mapping-related artifacts.

Prerequisites

  • TBD

Steps

  1. Create a target list of intervals to be realigned
  2. Perform realignment of the target intervals

1. Create a target list of intervals to be realigned

Action

Run the following GATK command:

java -jar GenomeAnalysisTK.jar \ 
    -T RealignerTargetCreator \ 
    -R reference.fa \ 
    -I dedup_reads.bam \ 
    -L 20 \ 
    -known gold_indels.vcf \ 
    -o target_intervals.list 

Expected Result

This creates a file called target_intervals.list containing the list of intervals that the program identified as needing realignment within our target, chromosome 20.

The list of known indel sites (gold_indels.vcf) are used as targets for realignment. Only use it if there is such a list for your organism.


2. Perform realignment of the target intervals

Action

Run the following GATK command:

java -jar GenomeAnalysisTK.jar \ 
    -T IndelRealigner \ 
    -R reference.fa \ 
    -I dedup_reads.bam \ 
    -targetIntervals target_intervals.list \ 
    -known gold_indels.vcf \ 
    -o realigned_reads.bam 

Expected Result

This creates a file called realigned_reads.bam containing all the original reads, but with better local alignments in the regions that were realigned.

Note that here, we didn’t include the -L 20 argument. It's not necessary since the program will only run on the target intervals we are providing.


Do you have a question on this topic that wasn't addressed anywhere here? Please ask it here in the forum.

Base Quality Score Recalibration

All our variant calling algorithms rely heavily on the quality scores assigned to the individual base calls in each sequence read. These scores are per-base estimates of error emitted by the sequencing machines. Unfortunately the scores produced by the machines are subject to various sources of systematic error, leading to over- or under-estimated base quality scores in the data. Base quality score recalibration is a process in which we apply machine learning to model these errors empirically and adjust the quality scores accordingly. This allows us to get more accurate base qualities, which in turn improves the accuracy of our variant calls. The base recalibration process involves two key steps: first the program builds a model of covariation based on the data and a set of known variants (which you can bootstrap if there is none available for your organism), then it adjusts the base quality scores in the data based on the model.

In addition, there is an optional but highly recommended step that involves building a second model and generating before/after plots to visualize the effects of the recalibration process.



Methods

Comments (100)

Detailed information about command line options for BaseRecalibrator can be found here.

Introduction

The tools in this package recalibrate base quality scores of sequencing-by-synthesis reads in an aligned BAM file. After recalibration, the quality scores in the QUAL field in each read in the output BAM are more accurate in that the reported quality score is closer to its actual probability of mismatching the reference genome. Moreover, the recalibration tool attempts to correct for variation in quality with machine cycle and sequence context, and by doing so provides not only more accurate quality scores but also more widely dispersed ones. The system works on BAM files coming from many sequencing platforms: Illumina, SOLiD, 454, Complete Genomics, Pacific Biosciences, etc.

New with the release of the full version of GATK 2.0 is the ability to recalibrate not only the well-known base quality scores but also base insertion and base deletion quality scores. These are per-base quantities which estimate the probability that the next base in the read was mis-incorporated or mis-deleted (due to slippage, for example). We've found that these new quality scores are very valuable in indel calling algorithms. In particular these new probabilities fit very naturally as the gap penalties in an HMM-based indel calling algorithms. We suspect there are many other fantastic uses for these data.

This process is accomplished by analyzing the covariation among several features of a base. For example:

  • Reported quality score
  • The position within the read
  • The preceding and current nucleotide (sequencing chemistry effect) observed by the sequencing machine

These covariates are then subsequently applied through a piecewise tabular correction to recalibrate the quality scores of all reads in a BAM file.

For example, pre-calibration a file could contain only reported Q25 bases, which seems good. However, it may be that these bases actually mismatch the reference at a 1 in 100 rate, so are actually Q20. These higher-than-empirical quality scores provide false confidence in the base calls. Moreover, as is common with sequencing-by-synthesis machine, base mismatches with the reference occur at the end of the reads more frequently than at the beginning. Also, mismatches are strongly associated with sequencing context, in that the dinucleotide AC is often much lower quality than TG. The recalibration tool will not only correct the average Q inaccuracy (shifting from Q25 to Q20) but identify subsets of high-quality bases by separating the low-quality end of read bases AC bases from the high-quality TG bases at the start of the read. See below for examples of pre and post corrected values.

The system was designed for users to be able to easily add new covariates to the calculations. For users wishing to add their own covariate simply look at QualityScoreCovariate.java for an idea of how to implement the required interface. Each covariate is a Java class which implements the org.broadinstitute.sting.gatk.walkers.recalibration.Covariate interface. Specifically, the class needs to have a getValue method defined which looks at the read and associated sequence context and pulls out the desired information such as machine cycle.

Running the tools

BaseRecalibrator

Detailed information about command line options for BaseRecalibrator can be found here.

This GATK processing step walks over all of the reads in my_reads.bam and tabulates data about the following features of the bases:

  • read group the read belongs to
  • assigned quality score
  • machine cycle producing this base
  • current base + previous base (dinucleotide)

For each bin, we count the number of bases within the bin and how often such bases mismatch the reference base, excluding loci known to vary in the population, according to dbSNP. After running over all reads, BaseRecalibrator produces a file called my_reads.recal_data.grp, which contains the data needed to recalibrate reads. The format of this GATK report is described below.

Creating a recalibrated BAM

To create a recalibrated BAM you can use GATK's PrintReads with the engine on-the-fly recalibration capability. Here is a typical command line to do so:

 
java -jar GenomeAnalysisTK.jar \
   -T PrintReads \
   -R reference.fasta \
   -I input.bam \
   -BQSR recalibration_report.grp \
   -o output.bam

After computing covariates in the initial BAM File, we then walk through the BAM file again and rewrite the quality scores (in the QUAL field) using the data in the recalibration_report.grp file, into a new BAM file.

This step uses the recalibration table data in recalibration_report.grp produced by BaseRecalibration to recalibrate the quality scores in input.bam, and writing out a new BAM file output.bam with recalibrated QUAL field values.

Effectively the new quality score is:

  • the sum of the global difference between reported quality scores and the empirical quality
  • plus the quality bin specific shift
  • plus the cycle x qual and dinucleotide x qual effect

Following recalibration, the read quality scores are much closer to their empirical scores than before. This means they can be used in a statistically robust manner for downstream processing, such as SNP calling. In additional, by accounting for quality changes by cycle and sequence context, we can identify truly high quality bases in the reads, often finding a subset of bases that are Q30 even when no bases were originally labeled as such.

Miscellaneous information

  • The recalibration system is read-group aware. It separates the covariate data by read group in the recalibration_report.grp file (using @RG tags) and PrintReads will apply this data for each read group in the file. We routinely process BAM files with multiple read groups. Please note that the memory requirements scale linearly with the number of read groups in the file, so that files with many read groups could require a significant amount of RAM to store all of the covariate data.
  • A critical determinant of the quality of the recalibation is the number of observed bases and mismatches in each bin. The system will not work well on a small number of aligned reads. We usually expect well in excess of 100M bases from a next-generation DNA sequencer per read group. 1B bases yields significantly better results.
  • Unless your database of variation is so poor and/or variation so common in your organism that most of your mismatches are real snps, you should always perform recalibration on your bam file. For humans, with dbSNP and now 1000 Genomes available, almost all of the mismatches - even in cancer - will be errors, and an accurate error model (essential for downstream analysis) can be ascertained.
  • The recalibrator applies a "yates" correction for low occupancy bins. Rather than inferring the true Q score from # mismatches / # bases we actually infer it from (# mismatches + 1) / (# bases + 2). This deals very nicely with overfitting problems, which has only a minor impact on data sets with billions of bases but is critical to avoid overconfidence in rare bins in sparse data.

Example pre and post recalibration results

  • Recalibration of a lane sequenced at the Broad by an Illumina GA-II in February 2010
  • There is a significant improvement in the accuracy of the base quality scores after applying the GATK recalibration procedure

The output of the BaseRecalibrator

  • A Recalibration report containing all the recalibration information for the data

Note that the BasRecalibrator no longer produces plots; this is now done by the AnalyzeCovariates tool.

The Recalibration Report

The recalibration report is a [GATKReport](http://gatk.vanillaforums.com/discussion/1244/what-is-a-gatkreport) and not only contains the main result of the analysis, but it is also used as an input to all subsequent analyses on the data. The recalibration report contains the following 5 tables:

  • Arguments Table -- a table with all the arguments and its values
  • Quantization Table
  • ReadGroup Table
  • Quality Score Table
  • Covariates Table

Arguments Table

This is the table that contains all the arguments used to run BQSRv2 for this dataset. This is important for the on-the-fly recalibration step to use the same parameters used in the recalibration step (context sizes, covariates, ...).

Example Arguments table:

 
#:GATKTable:true:1:17::;
#:GATKTable:Arguments:Recalibration argument collection values used in this run
Argument                    Value
covariate                   null
default_platform            null
deletions_context_size      6
force_platform              null
insertions_context_size     6
...

Quantization Table

The GATK offers native support to quantize base qualities. The GATK quantization procedure uses a statistical approach to determine the best binning system that minimizes the error introduced by amalgamating the different qualities present in the specific dataset. When running BQSRv2, a table with the base counts for each base quality is generated and a 'default' quantization table is generated. This table is a required parameter for any other tool in the GATK if you want to quantize your quality scores.

The default behavior (currently) is to use no quantization when performing on-the-fly recalibration. You can override this by using the engine argument -qq. With -qq 0 you don't quantize qualities, or -qq N you recalculate the quantization bins using N bins on the fly. Note that quantization is completely experimental now and we do not recommend using it unless you are a super advanced user.

Example Arguments table:

 
#:GATKTable:true:2:94:::;
#:GATKTable:Quantized:Quality quantization map
QualityScore  Count        QuantizedScore
0                     252               0
1                   15972               1
2                  553525               2
3                 2190142               9
4                 5369681               9
9                83645762               9
...

ReadGroup Table

This table contains the empirical quality scores for each read group, for mismatches insertions and deletions. This is not different from the table used in the old table recalibration walker.

 
#:GATKTable:false:6:18:%s:%s:%.4f:%.4f:%d:%d:;
#:GATKTable:RecalTable0:
ReadGroup  EventType  EmpiricalQuality  EstimatedQReported  Observations  Errors
SRR032768  D                   40.7476             45.0000    2642683174    222475
SRR032766  D                   40.9072             45.0000    2630282426    213441
SRR032764  D                   40.5931             45.0000    2919572148    254687
SRR032769  D                   40.7448             45.0000    2850110574    240094
SRR032767  D                   40.6820             45.0000    2820040026    241020
SRR032765  D                   40.9034             45.0000    2441035052    198258
SRR032766  M                   23.2573             23.7733    2630282426  12424434
SRR032768  M                   23.0281             23.5366    2642683174  13159514
SRR032769  M                   23.2608             23.6920    2850110574  13451898
SRR032764  M                   23.2302             23.6039    2919572148  13877177
SRR032765  M                   23.0271             23.5527    2441035052  12158144
SRR032767  M                   23.1195             23.5852    2820040026  13750197
SRR032766  I                   41.7198             45.0000    2630282426    177017
SRR032768  I                   41.5682             45.0000    2642683174    184172
SRR032769  I                   41.5828             45.0000    2850110574    197959
SRR032764  I                   41.2958             45.0000    2919572148    216637
SRR032765  I                   41.5546             45.0000    2441035052    170651
SRR032767  I                   41.5192             45.0000    2820040026    198762

Quality Score Table

This table contains the empirical quality scores for each read group and original quality score, for mismatches insertions and deletions. This is not different from the table used in the old table recalibration walker.

 
#:GATKTable:false:6:274:%s:%s:%s:%.4f:%d:%d:;
#:GATKTable:RecalTable1:
ReadGroup  QualityScore  EventType  EmpiricalQuality  Observations  Errors
SRR032767            49  M                   33.7794          9549        3
SRR032769            49  M                   36.9975          5008        0
SRR032764            49  M                   39.2490          8411        0
SRR032766            18  M                   17.7397      16330200   274803
SRR032768            18  M                   17.7922      17707920   294405
SRR032764            45  I                   41.2958    2919572148   216637
SRR032765             6  M                    6.0600       3401801   842765
SRR032769            45  I                   41.5828    2850110574   197959
SRR032764             6  M                    6.0751       4220451  1041946
SRR032767            45  I                   41.5192    2820040026   198762
SRR032769             6  M                    6.3481       5045533  1169748
SRR032768            16  M                   15.7681      12427549   329283
SRR032766            16  M                   15.8173      11799056   309110
SRR032764            16  M                   15.9033      13017244   334343
SRR032769            16  M                   15.8042      13817386   363078
...

Covariates Table

This table has the empirical qualities for each covariate used in the dataset. The default covariates are cycle and context. In the current implementation, context is of a fixed size (default 6). Each context and each cycle will have an entry on this table stratified by read group and original quality score.

 
#:GATKTable:false:8:1003738:%s:%s:%s:%s:%s:%.4f:%d:%d:;
#:GATKTable:RecalTable2:
ReadGroup  QualityScore  CovariateValue  CovariateName  EventType  EmpiricalQuality  Observations  Errors
SRR032767            16  TACGGA          Context        M                   14.2139           817      30
SRR032766            16  AACGGA          Context        M                   14.9938          1420      44
SRR032765            16  TACGGA          Context        M                   15.5145           711      19
SRR032768            16  AACGGA          Context        M                   15.0133          1585      49
SRR032764            16  TACGGA          Context        M                   14.5393           710      24
SRR032766            16  GACGGA          Context        M                   17.9746          1379      21
SRR032768            45  CACCTC          Context        I                   40.7907        575849      47
SRR032764            45  TACCTC          Context        I                   43.8286        507088      20
SRR032769            45  TACGGC          Context        D                   38.7536         37525       4
SRR032768            45  GACCTC          Context        I                   46.0724        445275      10
SRR032766            45  CACCTC          Context        I                   41.0696        575664      44
SRR032769            45  TACCTC          Context        I                   43.4821        490491      21
SRR032766            45  CACGGC          Context        D                   45.1471         65424       1
SRR032768            45  GACGGC          Context        D                   45.3980         34657       0
SRR032767            45  TACGGC          Context        D                   42.7663         37814       1
SRR032767            16  AACGGA          Context        M                   15.9371          1647      41
SRR032764            16  GACGGA          Context        M                   18.2642          1273      18
SRR032769            16  CACGGA          Context        M                   13.0801          1442      70
SRR032765            16  GACGGA          Context        M                   15.9934          1271      31
...

Troubleshooting

The memory requirements of the recalibrator will vary based on the type of JVM running the application and the number of read groups in the input bam file.

If the application reports 'java.lang.OutOfMemoryError: Java heap space', increase the max heap size provided to the JVM by adding ' -Xmx????m' to the jvm_args variable in RecalQual.py, where '????' is the maximum available memory on the processing computer.

I've tried recalibrating my data using a downloaded file, such as NA12878 on 454, and apply the table to any of the chromosome BAM files always fails due to hitting my memory limit. I've tried giving it as much as 15GB but that still isn't enough.

All of our big merged files for 454 are running with -Xmx16000m arguments to the JVM -- it's enough to process all of the files. 32GB might make the 454 runs a lot faster though.

I have a recalibration file calculated over the entire genome (such as for the 1000 genomes trio) but I split my file into pieces (such as by chromosome). Can the recalibration tables safely be applied to the per chromosome BAM files?

Yes they can. The original tables needed to be calculated over the whole genome but they can be applied to each piece of the data set independently.

I'm working on a genome that doesn't really have a good SNP database yet. I'm wondering if it still makes sense to run base quality score recalibration without known SNPs.

The base quality score recalibrator treats every reference mismatch as indicative of machine error. True polymorphisms are legitimate mismatches to the reference and shouldn't be counted against the quality of a base. We use a database of known polymorphisms to skip over most polymorphic sites. Unfortunately without this information the data becomes almost completely unusable since the quality of the bases will be inferred to be much much lower than it actually is as a result of the reference-mismatching SNP sites.

However, all is not lost if you are willing to experiment a bit. You can bootstrap a database of known SNPs. Here's how it works:

  • First do an initial round of SNP calling on your original, unrecalibrated data.
  • Then take the SNPs that you have the highest confidence in and use that set as the database of known SNPs by feeding it as a VCF file to the base quality score recalibrator.
  • Finally, do a real round of SNP calling with the recalibrated data. These steps could be repeated several times until convergence.

Downsampling to reduce run time

For users concerned about run time please note this small analysis below showing the approximate number of reads per read group that are required to achieve a given level of recalibration performance. The analysis was performed with 51 base pair Illumina reads on pilot data from the 1000 Genomes Project. Downsampling can be achieved by specifying a genome interval using the -L option. For users concerned only with recalibration accuracy please disregard this plot and continue to use all available data when generating the recalibration table.

Tutorials

Comments (30)

Objective

Recalibrate base quality scores in order to correct sequencing errors and other experimental artifacts.

Prerequisites

  • TBD

Steps

  1. Analyze patterns of covariation in the sequence dataset
  2. Do a second pass to analyze covariation remaining after recalibration
  3. Generate before/after plots
  4. Apply the recalibration to your sequence data

1. Analyze patterns of covariation in the sequence dataset

Action

Run the following GATK command:

java -jar GenomeAnalysisTK.jar \ 
    -T BaseRecalibrator \ 
    -R reference.fa \ 
    -I realigned_reads.bam \ 
    -L 20 \ 
    -knownSites dbsnp.vcf \ 
    -knownSites gold_indels.vcf \ 
    -o recal_data.table 

Expected Result

This creates a GATKReport file called recal_data.grp containing several tables. These tables contain the covariation data that will be used in a later step to recalibrate the base qualities of your sequence data.

It is imperative that you provide the program with a set of known sites, otherwise it will refuse to run. The known sites are used to build the covariation model and estimate empirical base qualities. For details on what to do if there are no known sites available for your organism of study, please see the online GATK documentation.


2. Do a second pass to analyze covariation remaining after recalibration

Action

Run the following GATK command:

java -jar GenomeAnalysisTK.jar \ 
    -T BaseRecalibrator \ 
    -R reference.fa \ 
    -I realigned_reads.bam \ 
    -L 20 \ 
    -knownSites dbsnp.vcf \ 
    -knownSites gold_indels.vcf \ 
    -BQSR recal_data.table \ 
    -o post_recal_data.table 

Expected Result

This creates another GATKReport file, which we will use in the next step to generate plots. Note the use of the -BQSR flag, which tells the GATK engine to perform on-the-fly recalibration based on the first recalibration data table.


3. Generate before/after plots

Action

Run the following GATK command:

java -jar GenomeAnalysisTK.jar \ 
    -T AnalyzeCovariates \ 
    -R reference.fa \ 
    -L 20 \ 
    -before recal_data.table \
    -after post_recal_data.table \
    -plots recalibration_plots.pdf

Expected Result

This generates a document called recalibration_plots.pdf containing plots that show how the reported base qualities match up to the empirical qualities calculated by the BaseRecalibrator. Comparing the before and after plots allows you to check the effect of the base recalibration process before you actually apply the recalibration to your sequence data. For details on how to interpret the base recalibration plots, please see the online GATK documentation.


4. Apply the recalibration to your sequence data

Action

Run the following GATK command:

java -jar GenomeAnalysisTK.jar \ 
    -T PrintReads \ 
    -R reference.fa \ 
    -I realigned_reads.bam \ 
    -L 20 \ 
    -BQSR recal_data.table \ 
    -o recal_reads.bam 

Expected Result

This creates a file called recal_reads.bam containing all the original reads, but now with exquisitely accurate base substitution, insertion and deletion quality scores. By default, the original quality scores are discarded in order to keep the file size down. However, you have the option to retain them by adding the flag –emit_original_quals to the PrintReads command, in which case the original qualities will also be written in the file, tagged OQ.

Notice how this step uses a very simple tool, PrintReads, to apply the recalibration. What’s happening here is that we are loading in the original sequence data, having the GATK engine recalibrate the base qualities on-the-fly thanks to the -BQSR flag (as explained earlier), and just using PrintReads to write out the resulting data to the new file.


Do you have a question on this topic that wasn't addressed anywhere here? Please ask it here in the forum.

Variant Discovery Overview

Once you've pre-processed your data according to our recommendations, you are ready to undertake the variant discovery process, i.e. identify the sites where your data displays variation relative to the reference genome, and calculate genotypes for each sample at that site. Unfortunately some of the variation you observe is caused by mapping and sequencing artifacts, so the greatest challenge here is to balance the need for sensitivity (to minimize false negatives, i.e. failing to identify real variants) vs. specificity (to minimize false positives, i.e. failing to reject artifacts). We have found that it is very difficult to reconcile these objectives in a single step, so instead we decompose the variant discovery process into two separate steps: variant calling and variant filtering. The first step is designed to maximize sensitivity, while the filtering step aims to deliver a level of specificity that can be customized for each project.

These recommendations assumed that you are analyzing a cohort comprised of multiple samples corresponding to different individuals. If you are analyzing a single individual in isolation, see the FAQs below.


Notes on which tools to use

  • The GATK includes two variant calling tools, HaplotypeCaller and UnifiedGenotyper, but only HaplotypeCaller is capable of handling RNAseq data correctly.
  • At this time, variant filtering should be done by applying hard filters because we have not yet determined what are the appropriate parameters needed to perform variant recalibration on callsets derived from RNAseq data.



Do you have a question on this topic that wasn't addressed anywhere here? Please ask it here in the forum.

Calling Variants with HaplotypeCaller

Many variant callers specialize in either SNPs or Indels, or (like the GATK's own UnifiedGenotyper) have to call them using separate models of variation. The HaplotypeCaller is capable of calling SNPs and indels simultaneously via local de-novo assembly of haplotypes in an active region. In other words, whenever the program encounters a region showing signs of variation, it discards the existing mapping information and completely reassembles the reads in that region. This allows the HaplotypeCaller to be more accurate when calling regions that are traditionally difficult to call, for example when they contain different types of variants close to each other. It also makes the HaplotypeCaller much better at calling indels.

In addition, the HaplotypeCaller is able to correctly handle the splice junctions that make RNAseq a challenge for most variant callers. Specifically, HaplotypeCaller performs dangling head merging operations, and avoids using soft-clipped bases in order to minimize false positive and false negative calls. We also use lower confidence thresholds for calling variants on RNAseq. See the tutorial document for detailed parameter recommendations.



Methods

Comments (105)

Overview

This document describes the details of the GATK Best Practices workflow for SNP and indel calling on RNAseq data.

Please note that any command lines are only given as example of how the tools can be run. You should always make sure you understand what is being done at each step and whether the values are appropriate for your data. To that effect, you can find more guidance here.

In brief, the key modifications made to the DNAseq Best Practices focus on handling splice junctions correctly, which involves specific mapping and pre-processing procedures, as well as some new functionality in the HaplotypeCaller.

Caveats

Please keep in mind that our DNA-focused Best Practices were developed over several years of thorough experimentation, and are continuously updated as new observations come to light and the analysis methods improve. We have only been working with RNAseq for a few months, so there are many aspects that we still need to examine in more detail before we can be fully confident that we are doing the best possible thing.

For one thing, these recommendations are based on high quality RNA-seq data (30 million 75bp paired-end reads produced on Illumina HiSeq). Other types of data might need slightly different processing. In addition, we have currently worked only on data from one tissue from one individual. Once we’ve had the opportunity to get more experience with different types (and larger amounts) of data, we will update these recommendations to be more comprehensive.

Finally, we know that the current recommended pipeline is producing both false positives (wrong variant calls) and false negatives (missed variants) errors. While some of those errors are inevitable in any pipeline, others are errors that we can and will address in future versions of the pipeline. A few examples of such errors are given in this article as well as our ideas for fixing them in the future.

We will be improving these recommendations progressively as we go, and we hope that the research community will help us by providing feedback of their experiences applying our recommendations to their data.


The workflow

1. Mapping to the reference

The first major difference relative to the DNAseq Best Practices is the mapping step. For DNA-seq, we recommend BWA. For RNA-seq, we evaluated all the major software packages that are specialized in RNAseq alignment, and we found that we were able to achieve the highest sensitivity to both SNPs and, importantly, indels, using STAR aligner. Specifically, we use the STAR 2-pass method which was described in a recent publication (see page 43 of the Supplemental text of the Pär G Engström et al. paper referenced below for full protocol details -- we used the suggested protocol with the default parameters). In brief, in the STAR 2-pass approach, splice junctions detected in a first alignment run are used to guide the final alignment.

Here is a walkthrough of the STAR 2-pass alignment steps:

1) STAR uses genome index files that must be saved in unique directories. The human genome index was built from the FASTA file hg19.fa as follows:

genomeDir=/path/to/hg19
mkdir $genomeDir
STAR --runMode genomeGenerate --genomeDir $genomeDir --genomeFastaFiles hg19.fa\  --runThreadN <n>

2) Alignment jobs were executed as follows:

runDir=/path/to/1pass
mkdir $runDir
cd $runDir
STAR --genomeDir $genomeDir --readFilesIn mate1.fq mate2.fq --runThreadN <n>

3) For the 2-pass STAR, a new index is then created using splice junction information contained in the file SJ.out.tab from the first pass:

genomeDir=/path/to/hg19_2pass
mkdir $genomeDir
STAR --runMode genomeGenerate --genomeDir $genomeDir --genomeFastaFiles hg19.fa \
    --sjdbFileChrStartEnd /path/to/1pass/SJ.out.tab --sjdbOverhang 75 --runThreadN <n>

4) The resulting index is then used to produce the final alignments as follows:

runDir=/path/to/2pass
mkdir $runDir
cd $runDir
STAR --genomeDir $genomeDir --readFilesIn mate1.fq mate2.fq --runThreadN <n>

2. Add read groups, sort, mark duplicates, and create index

The above step produces a SAM file, which we then put through the usual Picard processing steps: adding read group information, sorting, marking duplicates and indexing.

java -jar AddOrReplaceReadGroups I=star_output.sam O=rg_added_sorted.bam SO=coordinate RGID=id RGLB=library RGPL=platform RGPU=machine RGSM=sample 

java -jar MarkDuplicates I=rg_added_sorted.bam O=dedupped.bam  CREATE_INDEX=true VALIDATION_STRINGENCY=SILENT M=output.metrics 

3. Split'N'Trim and reassign mapping qualities

Next, we use a new GATK tool called SplitNCigarReads developed specially for RNAseq, which splits reads into exon segments (getting rid of Ns but maintaining grouping information) and hard-clip any sequences overhanging into the intronic regions.

In the future we plan to integrate this into the GATK engine so that it will be done automatically where appropriate, but for now it needs to be run as a separate step.

At this step we also add one important tweak: we need to reassign mapping qualities, because STAR assigns good alignments a MAPQ of 255 (which technically means “unknown” and is therefore meaningless to GATK). So we use the GATK’s ReassignOneMappingQuality read filter to reassign all good alignments to the default value of 60. This is not ideal, and we hope that in the future RNAseq mappers will emit meaningful quality scores, but in the meantime this is the best we can do. In practice we do this by adding the ReassignOneMappingQuality read filter to the splitter command.

Please note that we recently (6/11/14) edited this to fix a documentation error regarding the filter to use. See this announcement for details.

Finally, be sure to specify that reads with N cigars should be allowed. This is currently still classified as an "unsafe" option, but this classification will change to reflect the fact that this is now a supported option for RNAseq processing.

java -jar GenomeAnalysisTK.jar -T SplitNCigarReads -R ref.fasta -I dedupped.bam -o split.bam -rf ReassignOneMappingQuality -RMQF 255 -RMQT 60 -U ALLOW_N_CIGAR_READS

4. Indel Realignment (optional)

After the splitting step, we resume our regularly scheduled programming... to some extent. We have found that performing realignment around indels can help rescue a few indels that would otherwise be missed, but to be honest the effect is marginal. So while it can’t hurt to do it, we only recommend performing the realignment step if you have compute and time to spare (or if it’s important not to miss any potential indels).

5. Base Recalibration

We do recommend running base recalibration (BQSR). Even though the effect is also marginal when applied to good quality data, it can absolutely save your butt in cases where the qualities have systematic error modes.

Both steps 4 and 5 are run as described for DNAseq (with the same known sites resource files), without any special arguments. Finally, please note that you should NOT run ReduceReads on your RNAseq data. The ReduceReads tool will no longer be available in GATK 3.0.

6. Variant calling

Finally, we have arrived at the variant calling step! Here, we recommend using HaplotypeCaller because it is performing much better in our hands than UnifiedGenotyper (our tests show that UG was able to call less than 50% of the true positive indels that HC calls). We have added some functionality to the variant calling code which will intelligently take into account the information about intron-exon split regions that is embedded in the BAM file by SplitNCigarReads. In brief, the new code will perform “dangling head merging” operations and avoid using soft-clipped bases (this is a temporary solution) as necessary to minimize false positive and false negative calls. To invoke this new functionality, just add -recoverDanglingHeads -dontUseSoftClippedBases to your regular HC command line. Also, we found that we get better results if we lower the minimum phred-scaled confidence threshold for calling variants on RNAseq data, so we use a default of 20 (instead of 30 in DNA-seq data).

java -jar GenomeAnalysisTK.jar -T HaplotypeCaller -R ref.fasta -I input.bam -recoverDanglingHeads -dontUseSoftClippedBases -stand_call_conf 20.0 -stand_emit_conf 20.0 -o output.vcf

7. Variant filtering

To filter the resulting callset, you will need to apply hard filters, as we do not yet have the RNAseq training/truth resources that would be needed to run variant recalibration (VQSR).

We recommend that you filter clusters of at least 3 SNPs that are within a window of 35 bases between them by adding -window 35 -cluster 3 to your command. This filter recommendation is specific for RNA-seq data.

As in DNA-seq, we recommend filtering based on Fisher Strand values (FS > 30.0) and Qual By Depth values (QD < 2.0).

java -jar GenomeAnalysisTK.jar -T VariantFiltration -R hg_19.fasta -V input.vcf -window 35 -cluster 3 -filterName FS -filter "FS > 30.0" -filterName QD -filter "QD < 2.0" -o output.vcf 

Please note that we selected these hard filtering values in attempting to optimize both high sensitivity and specificity together. By applying the hard filters, some real sites will get filtered. This is a tradeoff that each analyst should consider based on his/her own project. If you care more about sensitivity and are willing to tolerate more false positives calls, you can choose not to filter at all (or to use less restrictive thresholds).

An example of filtered (SNPs cluster filter) and unfiltered false variant calls:

An example of true variants that were filtered (false negatives). As explained in text, there is a tradeoff that comes with applying filters:


Known issues

There are a few known issues; one is that the allelic ratio is problematic. In many heterozygous sites, even if we can see in the RNAseq data both alleles that are present in the DNA, the ratio between the number of reads with the different alleles is far from 0.5, and thus the HaplotypeCaller (or any caller that expects a diploid genome) will miss that call. A DNA-aware mode of the caller might be able to fix such cases (which may be candidates also for downstream analysis of allele specific expression).

Although our new tool (splitNCigarReads) cleans many false positive calls that are caused by splicing inaccuracies by the aligners, we still call some false variants for that same reason, as can be seen in the example below. Some of those errors might be fixed in future versions of the pipeline with more sophisticated filters, with another realignment step in those regions, or by making the caller aware of splice positions.

As stated previously, we will continue to improve the tools and process over time. We have plans to improve the splitting/clipping functionalities, improve true positive and minimize false positive rates, as well as developing statistical filtering (i.e. variant recalibration) recommendations.

We also plan to add functionality to process DNAseq and RNAseq data from the same samples simultaneously, in order to facilitate analyses of post-transcriptional processes. Future extensions to the HaplotypeCaller will provide this functionality, which will require both DNAseq and RNAseq in order to produce the best results. Finally, we are also looking at solutions for measuring differential expression of alleles.


[1] Pär G Engström et al. “Systematic evaluation of spliced alignment programs for RNA-seq data”. Nature Methods, 2013


Do you have a question on this topic that wasn't addressed anywhere here? Please ask it here in the forum.

Filtering variants manually

To filter the callset generated by HaplotypeCaller, you will need to apply hard filters, as we do not yet have the RNAseq training/truth resources that would be needed to run variant recalibration (VQSR). The main annotations we recommend filtering on are Fisher Strand values and Qual By Depth values. In addition, we recommend you filter clusters of SNPs because these are indicative of error. You can find detailed parameter recommendations in the tutorial and FAQ articles linked below.

Please note that we selected these hard filtering values in attempting to optimize both high sensitivity and specificity together. By applying the hard filters, some real sites will get filtered. This is a tradeoff that each analyst should consider based on his/her own project. If you care more about sensitivity and are willing to tolerate more false positives calls, you can choose to use less restrictive thresholds or not to filter at all.



Methods

Comments (105)

Overview

This document describes the details of the GATK Best Practices workflow for SNP and indel calling on RNAseq data.

Please note that any command lines are only given as example of how the tools can be run. You should always make sure you understand what is being done at each step and whether the values are appropriate for your data. To that effect, you can find more guidance here.

In brief, the key modifications made to the DNAseq Best Practices focus on handling splice junctions correctly, which involves specific mapping and pre-processing procedures, as well as some new functionality in the HaplotypeCaller.

Caveats

Please keep in mind that our DNA-focused Best Practices were developed over several years of thorough experimentation, and are continuously updated as new observations come to light and the analysis methods improve. We have only been working with RNAseq for a few months, so there are many aspects that we still need to examine in more detail before we can be fully confident that we are doing the best possible thing.

For one thing, these recommendations are based on high quality RNA-seq data (30 million 75bp paired-end reads produced on Illumina HiSeq). Other types of data might need slightly different processing. In addition, we have currently worked only on data from one tissue from one individual. Once we’ve had the opportunity to get more experience with different types (and larger amounts) of data, we will update these recommendations to be more comprehensive.

Finally, we know that the current recommended pipeline is producing both false positives (wrong variant calls) and false negatives (missed variants) errors. While some of those errors are inevitable in any pipeline, others are errors that we can and will address in future versions of the pipeline. A few examples of such errors are given in this article as well as our ideas for fixing them in the future.

We will be improving these recommendations progressively as we go, and we hope that the research community will help us by providing feedback of their experiences applying our recommendations to their data.


The workflow

1. Mapping to the reference

The first major difference relative to the DNAseq Best Practices is the mapping step. For DNA-seq, we recommend BWA. For RNA-seq, we evaluated all the major software packages that are specialized in RNAseq alignment, and we found that we were able to achieve the highest sensitivity to both SNPs and, importantly, indels, using STAR aligner. Specifically, we use the STAR 2-pass method which was described in a recent publication (see page 43 of the Supplemental text of the Pär G Engström et al. paper referenced below for full protocol details -- we used the suggested protocol with the default parameters). In brief, in the STAR 2-pass approach, splice junctions detected in a first alignment run are used to guide the final alignment.

Here is a walkthrough of the STAR 2-pass alignment steps:

1) STAR uses genome index files that must be saved in unique directories. The human genome index was built from the FASTA file hg19.fa as follows:

genomeDir=/path/to/hg19
mkdir $genomeDir
STAR --runMode genomeGenerate --genomeDir $genomeDir --genomeFastaFiles hg19.fa\  --runThreadN <n>

2) Alignment jobs were executed as follows:

runDir=/path/to/1pass
mkdir $runDir
cd $runDir
STAR --genomeDir $genomeDir --readFilesIn mate1.fq mate2.fq --runThreadN <n>

3) For the 2-pass STAR, a new index is then created using splice junction information contained in the file SJ.out.tab from the first pass:

genomeDir=/path/to/hg19_2pass
mkdir $genomeDir
STAR --runMode genomeGenerate --genomeDir $genomeDir --genomeFastaFiles hg19.fa \
    --sjdbFileChrStartEnd /path/to/1pass/SJ.out.tab --sjdbOverhang 75 --runThreadN <n>

4) The resulting index is then used to produce the final alignments as follows:

runDir=/path/to/2pass
mkdir $runDir
cd $runDir
STAR --genomeDir $genomeDir --readFilesIn mate1.fq mate2.fq --runThreadN <n>

2. Add read groups, sort, mark duplicates, and create index

The above step produces a SAM file, which we then put through the usual Picard processing steps: adding read group information, sorting, marking duplicates and indexing.

java -jar AddOrReplaceReadGroups I=star_output.sam O=rg_added_sorted.bam SO=coordinate RGID=id RGLB=library RGPL=platform RGPU=machine RGSM=sample 

java -jar MarkDuplicates I=rg_added_sorted.bam O=dedupped.bam  CREATE_INDEX=true VALIDATION_STRINGENCY=SILENT M=output.metrics 

3. Split'N'Trim and reassign mapping qualities

Next, we use a new GATK tool called SplitNCigarReads developed specially for RNAseq, which splits reads into exon segments (getting rid of Ns but maintaining grouping information) and hard-clip any sequences overhanging into the intronic regions.

In the future we plan to integrate this into the GATK engine so that it will be done automatically where appropriate, but for now it needs to be run as a separate step.

At this step we also add one important tweak: we need to reassign mapping qualities, because STAR assigns good alignments a MAPQ of 255 (which technically means “unknown” and is therefore meaningless to GATK). So we use the GATK’s ReassignOneMappingQuality read filter to reassign all good alignments to the default value of 60. This is not ideal, and we hope that in the future RNAseq mappers will emit meaningful quality scores, but in the meantime this is the best we can do. In practice we do this by adding the ReassignOneMappingQuality read filter to the splitter command.

Please note that we recently (6/11/14) edited this to fix a documentation error regarding the filter to use. See this announcement for details.

Finally, be sure to specify that reads with N cigars should be allowed. This is currently still classified as an "unsafe" option, but this classification will change to reflect the fact that this is now a supported option for RNAseq processing.

java -jar GenomeAnalysisTK.jar -T SplitNCigarReads -R ref.fasta -I dedupped.bam -o split.bam -rf ReassignOneMappingQuality -RMQF 255 -RMQT 60 -U ALLOW_N_CIGAR_READS

4. Indel Realignment (optional)

After the splitting step, we resume our regularly scheduled programming... to some extent. We have found that performing realignment around indels can help rescue a few indels that would otherwise be missed, but to be honest the effect is marginal. So while it can’t hurt to do it, we only recommend performing the realignment step if you have compute and time to spare (or if it’s important not to miss any potential indels).

5. Base Recalibration

We do recommend running base recalibration (BQSR). Even though the effect is also marginal when applied to good quality data, it can absolutely save your butt in cases where the qualities have systematic error modes.

Both steps 4 and 5 are run as described for DNAseq (with the same known sites resource files), without any special arguments. Finally, please note that you should NOT run ReduceReads on your RNAseq data. The ReduceReads tool will no longer be available in GATK 3.0.

6. Variant calling

Finally, we have arrived at the variant calling step! Here, we recommend using HaplotypeCaller because it is performing much better in our hands than UnifiedGenotyper (our tests show that UG was able to call less than 50% of the true positive indels that HC calls). We have added some functionality to the variant calling code which will intelligently take into account the information about intron-exon split regions that is embedded in the BAM file by SplitNCigarReads. In brief, the new code will perform “dangling head merging” operations and avoid using soft-clipped bases (this is a temporary solution) as necessary to minimize false positive and false negative calls. To invoke this new functionality, just add -recoverDanglingHeads -dontUseSoftClippedBases to your regular HC command line. Also, we found that we get better results if we lower the minimum phred-scaled confidence threshold for calling variants on RNAseq data, so we use a default of 20 (instead of 30 in DNA-seq data).

java -jar GenomeAnalysisTK.jar -T HaplotypeCaller -R ref.fasta -I input.bam -recoverDanglingHeads -dontUseSoftClippedBases -stand_call_conf 20.0 -stand_emit_conf 20.0 -o output.vcf

7. Variant filtering

To filter the resulting callset, you will need to apply hard filters, as we do not yet have the RNAseq training/truth resources that would be needed to run variant recalibration (VQSR).

We recommend that you filter clusters of at least 3 SNPs that are within a window of 35 bases between them by adding -window 35 -cluster 3 to your command. This filter recommendation is specific for RNA-seq data.

As in DNA-seq, we recommend filtering based on Fisher Strand values (FS > 30.0) and Qual By Depth values (QD < 2.0).

java -jar GenomeAnalysisTK.jar -T VariantFiltration -R hg_19.fasta -V input.vcf -window 35 -cluster 3 -filterName FS -filter "FS > 30.0" -filterName QD -filter "QD < 2.0" -o output.vcf 

Please note that we selected these hard filtering values in attempting to optimize both high sensitivity and specificity together. By applying the hard filters, some real sites will get filtered. This is a tradeoff that each analyst should consider based on his/her own project. If you care more about sensitivity and are willing to tolerate more false positives calls, you can choose not to filter at all (or to use less restrictive thresholds).

An example of filtered (SNPs cluster filter) and unfiltered false variant calls:

An example of true variants that were filtered (false negatives). As explained in text, there is a tradeoff that comes with applying filters:


Known issues

There are a few known issues; one is that the allelic ratio is problematic. In many heterozygous sites, even if we can see in the RNAseq data both alleles that are present in the DNA, the ratio between the number of reads with the different alleles is far from 0.5, and thus the HaplotypeCaller (or any caller that expects a diploid genome) will miss that call. A DNA-aware mode of the caller might be able to fix such cases (which may be candidates also for downstream analysis of allele specific expression).

Although our new tool (splitNCigarReads) cleans many false positive calls that are caused by splicing inaccuracies by the aligners, we still call some false variants for that same reason, as can be seen in the example below. Some of those errors might be fixed in future versions of the pipeline with more sophisticated filters, with another realignment step in those regions, or by making the caller aware of splice positions.

As stated previously, we will continue to improve the tools and process over time. We have plans to improve the splitting/clipping functionalities, improve true positive and minimize false positive rates, as well as developing statistical filtering (i.e. variant recalibration) recommendations.

We also plan to add functionality to process DNAseq and RNAseq data from the same samples simultaneously, in order to facilitate analyses of post-transcriptional processes. Future extensions to the HaplotypeCaller will provide this functionality, which will require both DNAseq and RNAseq in order to produce the best results. Finally, we are also looking at solutions for measuring differential expression of alleles.


[1] Pär G Engström et al. “Systematic evaluation of spliced alignment programs for RNA-seq data”. Nature Methods, 2013


Do you have a question on this topic that wasn't addressed anywhere here? Please ask it here in the forum.