

Proteomics-based Biomarker Discovery: Mirage or Emerging Reality?

Steven A. Carr Broad Institute of MIT and Harvard

...but the track record for translation of discoveries made using proteomics into clinical assays has been poor

- Many proteins proposed as biomarkers but very few introduced into clinical practice (≤ 1/yr)
- · Demonstrated successes for proteomics: 0

Why? Can we do better?

Historical barriers to progress in proteomics-based BMD

- Absence of coordinated teams that included biostatisticians, clinicians and proteomics specialists has led to poor study design
- Few expert proteomics labs willing/able to focus on clinical sample analysis
 - · perceived difficulties, long time horizons, poor reputation of field
 - Has resulted in many studies describing readily detectable, abundant proteins with no specific disease association
- MS-platforms inadequate for the task
 - Difficulty in repeatedly and precisely measuring large number of peptides/ proteins over >108 concentration range
 - · Low number of patient samples used in Discovery high FDR
- Multiple ad hoc, statistically indefensible data analysis methods used
- Need for methods to quantify large numbers of peptides/proteins from Discovery in 100's of patient samples
 - Must be robust, quantitative, highly multiplexed, sensitive, specific

There have been remarkable improvements in the practice and technologies of Proteomics over the past few years

- Appropriate study design
- Robust sample processing methods
- Quantitative, multiplexed labeling of peptides
- Data acquired with fast and sensitive high performance LC-MS/MS technology
- Statistically rigorous data analysis

Unprecedented definition of proteins in cells and tissues

- 10K 12K distinct proteins
- · Precise and reproducible

Deep and broad PTM coverage

- >30K phosphosites
- >20K ubiquitinated peps
- >8K acetylation sites
- The number of proteins observed in tissues now begins to approximate the expressed proteome
- PTM analysis provide window into function and pathogenesis not accessible by genomic methods

How well does this translate to biomarker discovery in biofluids?

A functioning pipeline for biomarker development requires both Discovery and Targeted assay components > 10.000 100's 4 - 10 **Analytes Analytes Analytes** Clinical **Bio-Specimens** Discovery Verification Validation Plasma Tissue **Blood Proximal Population** Blood Tissue **Population Proximal fluids** fluids 10's 100 's 1000's Samples 5 4 1 Biomarkers worth Found in blood? biomarker higher in disease? evaluating candidates untargeted proteomics · genomics Rifai Nature Biotechnol 2006

For the first time, we are seeing multiple peptides from
the Troponins in the discovery plasma samples

		patient 1		patient 2		patient 3			
Protein Name	sequence	10min/BL 1h	r/DI /	thr/DI	10min/BL 1hr/BL 4	hr/DI	10min/PL	lbr/DI	4br/DI
Troponin T. cardiac muscle	(K)DLNELQALIEAHFENR(K)	0.925	0.804	2.565	1.434 1.598	3.317		IIII/BL	4III/DL
Troponin T, cardiac muscle	(K)VLAIDHLNEDQLREK(A)	0.667	0.336	8.394	1.101 1.000	0.017		2 915	9.159
Troponin T, cardiac muscle	(K)ELWQSIYNLEAEKFDLQEK(F)	0.447	0.758	7.909					
Troponin T. cardiac muscle	(K)ELWQSIYNLEAEK(F)	0.997	1.099	5.074					
Troponin T. cardiac muscle	(K)YEINVLR(N)	0.737	0.544	4.653					
Troponin T, cardiac muscle	(R)KVLAIDHLNEDQLR(E)	0.612	1.004	2.011					
Troponin T, cardiac muscle	(K)IPDGERVDFDDIHRK(R)	1.039	1.012	4.887					
Troponin T, cardiac muscle	(K)FDLQEK(F)	0.998	0.742	5.813					
Troponin T, cardiac muscle	(K)EAEDGPMEESKPK(P)				4.955 12.097	16.693			
Troponin T, cardiac muscle	(K)DLNELQALIEAHFEnR(K)				2.01 3.273	6.255			
Troponin T, cardiac muscle	(K)VLAIDHLNEDQLR(E)							1.648	5.462
Troponin I, cardiac muscle	(R)CQPLELAGLGFAELQDLCR(Q)	1.019	0.749	9.528			0.721	1.345	2.503
Troponin I, cardiac muscle	(R)CQPLELAGLGFAELQDLCR(Q)	0.239	1.059	3.935					
Troponin I, cardiac muscle	(K)NITEIADLTQK(I)	0.349	0.639	8.649			1.296	1.982	7.403
Troponin I, cardiac muscle	(R)VDKVDEERYDIEAK(V)	0.634	0.874	3.569					
Troponin I, cardiac muscle	(R)EVGDWRK(N)	1.119	2.47	6.892					
Troponin I, cardiac muscle	(K)IFDLR(G)	0.606	0.592	6.617			4.438	4.87	14.579
Troponin I, cardiac muscle	(R)ISADAMMQALLGAR(A)	1.027	0.823	2.406					
Troponin I, cardiac muscle	(K)TLLLQIAK(Q)	0.574	0.361	5.574					6.093
Troponin C, slow skeletal and cardiac muscles	(K)NADGYIDLDELK(I)	1.443		27.039	2.062 1.877	2.209		5.884	
Troponin C, slow skeletal and cardiac muscles	(K)AAVEQLTEEQKNEFK(A)	0.859	1.268						5.407
Troponin C, slow skeletal and cardiac muscles	(K)NADGYIDLDELK(I)	1.301	1.477		1.707 1.664	2.108	2.001	2.345	3.986
Troponin C, slow skeletal and cardiac muscles	(K)AAVEQLTEEQKNEFK(A)	1	0.959	5.006					
Troponin C, slow skeletal and cardiac muscles	(K)AAVEQLTEEQK(N)	0.894	0.916	4.077	4.695 3.992	12	1.193	1.517	2.446
Troponin C, slow skeletal and cardiac muscles	(K)GKSEEELSDLFR(M)	0.884	1.076	2.528			1.801	2.428	3.301
Troponin C, slow skeletal and cardiac muscles	(K)NADGYIDLDELK(I)	0.774	0.904	4.805					
Troponin C, slow skeletal and cardiac muscles	(K)AAFDIFVLGAEDGCISTK(E)	0.791	0.764	1.477			0.967	1.141	1.179
Troponin C, slow skeletal and cardiac muscles	(K)IMLQATGETITEDDIEELMK(D)				2.148 2.705	3.491			
Troponin C, slow skeletal and cardiac muscles	(R)IDYDEFLEFMK(G)				16.318 12.719	30.612	7.254	7.364	17.083

Keshishian Mol Cell Proteomics 2015

Discovery defines a reduced set of "sentinel" marks that need to be repeatedly measured in a range perturbations

Perturbations:

- Disease
- Development
- Drug
- · KO/KI

Not all proteins and PTMs of interest observed in all experiments

Analyte Valley of Death

Past: Westerns; Immunoassays

Desired assay properties:

- Highly specific
- Sensitive
- Highly precise
- Multiplexed
- Interference-free

Precisely measure selected analytes in all experiments – no missing data!

Targeted MS (MRM, PRM) with labeled internal standards is specific, precise, reproducible, robust, and can be highly multiplexed

Automated Sample Processing

Precise and Reproducible

Robust

High Multiplex and Information Content

400-plex MRM assay; single 3h run

Numerous, well documented Studies

- Addona (2009) Nature Biotech
- Whiteaker (2011) Mol Cell Proteomics
- Addona (2011) Nature Biotech
- Kuhn (2011) Mol Cell Proteomics
- Hüttenhain (2012) Sci Transl Med
- Kennedy (2013) Nature Methods
- Keshishian (2014) Mol Cell Proteomics

Availability of well validated MS-based assays for proteins and PTM's will help to alleviate the "reproducibility crisis"

NIH plans to enhance reproducibility

Francis S. Collins and Lawrence A. Tabak discuss initiatives that the US National Institutes of Health is exploring to restore the self-correcting nature of preclinical research.

"Efforts by the NIH alone will not be sufficient to effect real change in this unhealthy environment."

REPRODUCIBILITY OF RESEARCH FINDINGS

Preclinical research generates many secondary publications, even when results cannot be reproduced.

Journal impact factor	Number of articles	Mean number of citations of non-reproduced articles*	Mean number of citations of reproduced articles
>20	21	248 (range 3–800)	231 (range 82–519)
5–19	32	169 (range 6–1,909)	13 (range 3–24)

Results from ten-year retrospective analysis of experiments performed prospectively. The term 'non-reproduced' was assigned on the basis of findings not being sufficiently robust to drive a drug-development programme. *Source of citations: Google Scholar, May 2011.

Establishing Best Practices for reproducible and reliable protein measurements and creation of community resources

Targeted Peptide Measurements in Biology and Medicine: Best Practices for Mass Spectrometrybased Assay Development Using a Fit-for-Purpose Approach*

Developed at an NIH-sponsored Workshop with participants from:

 Pharma, Clinical Labs, IVD companies, FDA, AACC, Biotech, Journals

Outcomes:

- Recommended criteria for 3
 Tiers of assay validation
- Development of publication guidelines

* Carr et al. Mol Cell Proteomics 2014

CPTAC Assay Portal: using Tier 2 validation criteria for assay acceptance

https://assays.cancer.gov/

Conclusions

- Clinical proteomics begins with "Clinical" <u>invest</u> in defining the question or need and finding the right samples
- Modern proteomic approaches and technologies when coherently integrated can yield new biological insights and novel, sufficiently credentialed biomarker candidates that merit real clinical evaluation
- New, <u>targeted</u> MS-based methods enable highly specific and sensitive quantitative measurement of proteins and their modifications in high multiplex
 - MRM-MS and accurate mass, high resolution variants of MRM (aka PRM) are becoming the new workhorse technologies
 - Broad availability of this resource will change paradigms for how experiments are planned and executed
 - With technological evolution, convergence of discovery and verification is likely

Proteomics Group, Broad Institute of MIT and Harvard

Acknowledgements

Broad Proteomics

- Sue Abbatiello
- Rushdy Ahmad
- Michael Burgess
- Karl Clauser
- Amanda Creech
- Lola Fagbami
- Mike Gillette
- Emily Hartmann
- Jake Jaffe
- Hasmik Keshishian
- Eric Kuhn
- D.R. Mani
- Philipp Mertins
- Jinal Patel
- Lindsay Pino
- Jana Qiao
- Monica Schenone
- Tanya Svink
- Namrata Udeshi
- Janice Williamson

University of Washington

- Michael MacCoss
- Brendan MacLean

FHCRC

- Amanda Paulovich
- Jeff Whiteaker
- Lei Zhao
- Regine Shoenherr
- Pei Wang

Mass. General Hospital - Robert Gerszten

- Nir Hacohen
- Nicolas Chevrier

Brigham and Womens Hospital

- Marc Sabatine

Funding Agencies

Women's Cancer Research Fund, EIF Susan G. Komen for the Cure NIH: NCI and NHLBI

Bill and Melinda Gates Foundation