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SUMMARY

Although studies have identified hundreds of loci
associated with human traits and diseases, pinpoint-
ing causal alleles remains difficult, particularly for
non-coding variants. To address this challenge,
we adapted the massively parallel reporter assay
(MPRA) to identify variants that directly modulate
gene expression. We applied it to 32,373 variants
from 3,642 cis-expression quantitative trait loci and
control regions. Detection by MPRA was strongly
correlated with measures of regulatory function. We
demonstrate MPRA’s capabilities for pinpointing
causal alleles, using it to identify 842 variants showing
differential expression between alleles, including
53 well-annotated variants associated with diseases
and traits. We investigated one in detail, a risk allele
for ankylosing spondylitis, and provide direct evi-
dence of a non-coding variant that alters expression
of the prostaglandin EP4 receptor. These results
create a resource of concrete leads and illustrate
the promise of this approach for comprehensively
interrogating how non-coding polymorphism shapes
human biology.

INTRODUCTION

The genomic era has enormously increased our knowledge of

human genetic variation, but our understanding of the functional

consequences of that variation has not kept pace (Cooper and

Shendure, 2011). Although genome-wide association studies

(GWAS) and whole-genome scans for natural selection have

identified numerous loci linked to human traits and diseases, cor-

relation between nearby polymorphisms (linkage disequilibrium

or LD) within individual associations often leaves dozens to hun-

dreds of potential causal variants to be interrogated (Grossman

et al., 2013; Schaub et al., 2012). Mounting evidence suggests

that at themajority of these loci, thecausal variant(s) is anon-cod-

ing regulatory change rather than an amino acid substitution

(Farh et al., 2015; Maurano et al., 2012). Indeed, regulatory

changes drive some of the best understood examples of pheno-
typic diversity and adaptive evolution (Claussnitzer et al., 2015;

Musunuru et al., 2010; Tishkoff et al., 2007). Therefore, it is critical

that we be able to test whether a variant affects gene regulation.

Current approaches for measuring a variant’s effect on gene

expression fall into two categories, each with its own limitation.

Indirect methods, such as whole-genome epigenetic assays,

can only identify the broader regulatory state of a region, not

necessarily the effect of a particular variant (Andersson et al.,

2014; ENCODE Project Consortium, 2012; Kasowski et al.,

2013; McVicker et al., 2013). Direct methods, ones that measure

the impact of individual alleles in an episomal or native context

on gene expression, are currently low throughput and require

substantial resources for comprehensive evaluation of a region.

We adopted the massively parallel reporter assay (MPRA) as a

solution and modified it so that we could carry out large-scale,

sensitive, and direct testing of potential regulatory variants. This

assay is based upon the well-established reporter gene assay,

in which a vector containing a reporter gene (e.g., luciferase or

green fluorescent protein [GFP]), a promoter, and a potential reg-

ulatory sequence is inserted into a plasmid, which is transfected

into a cell; sequences that regulate gene expression then alter

the amount of luciferase/GFP expressed (Arnold et al., 2013;Mel-

nikov et al., 2012; Ow et al., 1986; Patwardhan et al., 2012; Vock-

ley et al., 2015; Kwasnieski et al., 2014). Through the use of unique

barcodes in the 30 UTR of the reporter to differentiate expression

of individual oligos, MPRA can test many different sequences

simultaneously, and it has been shown to reproducibly detect

segments of the genome that change expression levels (Kherad-

pour et al., 2013; Mogno et al., 2013). We aimed to incorporate

single-nucleotide and small-insertion/deletion polymorphisms

(referred to below as single-nucleotide variants or SNVs) into

these assays to see whether we could detect subtle differences

in howeachalleledrivesexpression.Becauseweusedonly amin-

imal promoter, with very low baseline expression, in this iteration

of the assay, we intended it primarily as a test of regulatory

sequence that increases (i.e., enhancers and promoters), rather

than decreases, expression; the latter will be difficult to detect

because baseline expression is already low.

Ideally, one would test the assay for sensitivity and specificity

byapplying it to aset of ‘‘gold-standard’’ variantspreviously iden-

tified as expression quantitative trait loci (eQTLs) that act on

enhancer and promoter elements. However, there is a dearth of

suchknownvariants. As thebest available alternative,we studied
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Figure 1. Overview of the MPRA Workflow

(A) Oligos are synthesized as 180 mer followed by cleavage off of the array.

(B–F) The single-stranded DNA is amplified, barcoded, and converted to

double-stranded DNA by emulsion PCR (B), which is then cloned into a re-

porter vector that has had the reporter gene removed to create the mpra:Dorf

library (C). The plasmid library is linearized between the barcode and oligo

sequences by restriction digest and a minimal promoter, and GFP open

reading frame is inserted by gibson assembly to create the final mpra:gfp li-

brary (D), which is used for transfection into the desired cell type (E). RNA is

harvested from the transfected cells, mRNA is captured and sequenced (F),

and barcode counts are compared to the count estimates from the sequencing

of the mpra:orf library (D).
a set of thousands of candidate eQTL variants in regions associ-

atedwith differential gene expression in the population. There are

important considerations in interpreting the results of such a test.

First, we test multiple candidate variants (sometimes dozens)
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within each eQTL region that are in LD with one another. We

generally expect that at most one of these variants will be causal,

and sometimes the true causal variant will not appear in the set

because thedegreeof LD falls below the cutoff used for inclusion.

For these reasons only a minority of the variants tested are ex-

pected to give a signal in the MPRA assay. Conservative esti-

mates suggest that in 34%–41% of eQTL peaks (dependent on

the population tested), the causal variant will be the top-associ-

ated allele. Second, only a subset of the true variants responsible

for eQTLs (23%–64%, according to recent estimates) will act on

enhancers or promoters, which are the functional classes thatwill

be detected in the MPRA assay (Farh et al., 2015; Gymrek et al.,

2015; Lappalainen et al., 2013). Variants that work by other pro-

cesses, such as microsatellites or post-transcriptional regula-

tion, would not be expected to score.

Because we expect only a minority (8%–26% based on the

prior estimates) of the variants in our test set to score by

MPRA, we must evaluate the assay by comparison with the per-

formance on control sets of common polymorphisms. We used

two control sets: the first chosen randomly from the genome,

and the second containing variants near but not associated

with eQTL variants.

We estimated the specificity, sensitivity, and reproducibility of

MPRA to localize causal alleles within large genomic loci linked

to variation in gene expression. In addition, we comprehensively

interrogated GWAS loci that overlap with eQTLs to identify and

characterize potential regulatory variants underlying human

diseases and traits.

RESULTS

Adapting MPRA to Test �30k Candidate Variants
We modified MPRA to increase its throughput while also

improving its reproducibility and sensitivity (Figure 1; Experi-

mental Procedures); the latter is crucial because we aim not

merely to find genetic elements that regulate genes but to detect

differences in regulation caused by single variants within those

elements. To accommodate our large library size and to increase

the sensitivity of the assay, we added 20 nucleotide barcodes to

the oligos by emulsion PCR and cloned the fragments to

generate a library; in this manner, each oligo is represented

by an average of a thousand tags within the plasmid library.

Following transfection, we captured the GFP mRNA by hybridi-

zation and performed high-throughput sequencing of the UTR

barcode to determine the effects of the oligos on the transcrip-

tion level of the reporter gene. This new experimental approach

decreased inter-experimental noise and allowed us to apply a

parametric statistical framework during analysis (Supplemental

Experimental Procedures).

Selection of Variants Tested
For benchmarking and discovery, we first examined nearly thirty

thousand SNVs within a set of eQTLs. We identified eQTLs from

the Geuvadis RNA-seq dataset of lymphoblastoid cell lines

(LCLs) from individuals of European (EUR) and West African

(YRI) ancestry due to the availability of both genome sequences

and immortalized cell lines for these individuals (Abecasis et al.,

2012; Lappalainen et al., 2013). For each of the 3,642 eQTLs, we
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Figure 2. Experimental Reproducibility

(A and B) Correlation of normalized oligo counts

between two transfection replicates of NA12878

(A). (B) Average normalized oligo counts for all

five plasmid replicates compared to normalized

counts for the five replicates from NA12878 RNA.

Axes across all plots were kept constant with

subplots added when additional data points were

excluded from the main plot (A and B). Blue boxes

within the inserts signify the displayed areas of the

main plots.

(C) Luciferase assay validation of estimated effect

sizes for individual oligos tested by MPRA. Each

point represents the average of eight MPRA and

four qPCR replicates. qPCR values were normal-

ized to two non-significant sequences (green

points) as determined by MPRA. Blue points:

significantly expressed sequences from MPRA;

cyan point: marginally significant sequence. Cor-

relation is provided as Pearson’s R.

(D) Coefficient of variation between experimental

replicates as a product of the number of barcodes

tagging an oligo.
designed and synthesized DNA oligonucleotides (oligos) repre-

senting the top-associated variant and all variants in perfect

LD with it. This approach selects an average of 3 SNVs per

eQTL peak. As noted above, we expect that (1) this set will often

fail to contain the true causal variant, and (2) when the set does

contain the causal variant, the other two variants will not be

causal. We also included 209 eQTLs that overlapped GWAS

hits for deeper investigation; for these, we tested all alleles in

moderately strong LD (r2 > = 0.9) with the lead variants. After

inclusion of several smaller sets of variants, and accounting

for neighboring variants and orientation of the variant when

associated with multiple genes, this first 79k oligo library

included 39,479 oligo pairs, originating from 29,173 unique var-

iants (see Supplemental Experimental Procedures for a com-

plete breakdown).

We also performed a second MPRA experiment that assayed

264 positive control variants (sites identified in the first 79k

MPRA library) and 3,200 negative control variants. The negative

controls included 2,700 variants chosen at random across the

genome matching the minor allele frequency distribution of the

larger 79k library. To select a set of negative control variants

with a similar biological profile, we included 500 SNVs that

were in close proximity to an eQTL peak (within 250–1000 bp)

and not in LD with the lead variant. We incorporated all variants

into a 7.5k oligo library. In total, across the two experiments
we evaluated 85,358 oligos (42,679

reference/alternate pairs), centering the

variant of interest in 150 bp of its genomic

sequence.

Technical Performance of MPRA
We transfected the original 79k MPRA li-

brary into two separate lymphoblastoid

cell lines (NA12878 and NA19239) from

the 1000 Genomes project as well as
into a hepatocarcinoma cell line (HepG2). We performed eight

and five technical replicates for the lymphoblastoid and hepato-

carcinoma cell lines, respectively. We observed high coverage

and excellent reproducibility in the assay, capturing 98.4% of

the 79K oligos tested at a depth of 20 reads or greater. Repro-

ducibility was excellent between experimental replicates of iden-

tical cell lines, with an average correlation of 0.99 (Figures 2A,

2B, and S1), and expression values were strongly correlated

with a traditional single-plexed luciferase assay for the 29 se-

quences we examined (R = 0.84, Figure 2C).

Each oligo in our initial 79k library was captured by an average

of 73 unique barcodes per replicate during sequencing (per sam-

ple range: 34–117 barcodes), with an average total read count of

1,102 (Figure S2A). A key feature of our approach is the use

of additional barcodes to reduce variability between replicates;

reducing this variability is crucial for achieving the sensitivity

required to detect subtle differences between alleles because

detection requires distinguishing the distributions for the two

alleles. To evaluate how this variability depended on the number

of barcodes, we downsampled barcodes for each oligo. We

observed little fluctuation in the estimated mean oligo count,

as long as they were captured with greater than 20 barcodes

(Figure S2B). The variance between the individual replicates,

on the other hand, continued to improve throughout the range

from 20 to 50 barcodes, indicating that power to detect small
Cell 165, 1519–1529, June 2, 2016 1521
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A Figure 3. Validation of Expression-Modi-

fying Sequences Discovered by MPRA

(A) Distribution of effect sizes (log2 of the RNA/

plasmid ratio) for oligos that were detected as

being under- or overexpressed.

(B) Log2(odds ratio) for the enrichment of

regulatory annotations in the 3,432 MPRA active

sequences within LCLs relative to non-active

sequences.

(C) Log2(odds ratio) for the enrichment in LCL DHS

sites for active sequences shared between LCLs

and HepG2s (blue), active in only LCLs (red),

and active in only HepG2 cells (green). Asterisk:

fisher’s test p value < 0.01.

Error bars represent one standard deviation.
differences between oligos is substantially affected by barcode

count (Figure 2D). This effect is highlighted in the second 7.5k

library: its smaller size allowed us to tag each oligo with an

average of 350 barcodes. This resulted in a greater sensitivity

to detect weak expression changes, illustrating the impact of

the number of barcodes tagging each variant and also high-

lighting the requirement for normalization when comparing be-

tween libraries (Figures S3A–S3D; Supplemental Experimental

Procedures).

Evaluating Regulatory Activity of the Oligos
Before looking for allelic effects, we first identified the subset of

sequences for which either or both variants altered the expres-

sion of the reporter. Of the 29k variants evaluated in the original

assay, 12% (3,432) had an effect on the reporter for at least one

of the two alleles (Table S1); these we call ‘‘active’’ sequences.

Of these, 95% enhanced expression of the reporter (Figures

3A and S3E). Because the assay uses a weak basal promoter,

it is more sensitive to increases in expression than to decreases.

It is conceivable, however, that the result also reflects differ-

ences in the proportion of activating and silencing elements in

the genome. We found that active sequences were shared be-

tween LCLs from different individuals more often than between

different cell types (74% between NA12878 and NA19239

compared to 52% between NA12878 and HepG2). This differ-

ence in overlap is likely an underestimate, as only three repli-

cates were performed in NA19239 compared to five in HepG2.
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The active sequences were reproducible,

with the effect sizes being highly corre-

lated when we re-tested 274 active

variants in the 7.5k MPRA experiment

(R = 0.95) (Figure S3F).

The sequences that scored as active in

the assay are significantly enriched for

markers associated with regulation in

the genome, including open chromatin,

biochemical marks denoting active pro-

moters and enhancers, and individual

transcription factors. We first evaluated

overlapwith open chromatin, as identified

by DNase hypersensitivity sites (DHS).
We found that 43.3% of the active sequences were marked as

DHS compared to only 19.4% for the non-active sequences, a

2.2-fold enrichment (odds ratio [OR] = 3.2, p = 1.83 10�191; Fig-

ure 3B). Histonemarks associated with active promoters and en-

hancers (H3k4me3, H2az, H327ac, CAGE) were both similarly

enriched, whereas marks associated with heterochromatin

and/or the blocking of transcription initiation (H3k9me3 and

H3k36me3) were significantly depleted, as expected (Figure 3B).

The strongest enrichments were seen with individual transcrip-

tion factor (TF) binding locations, with increases ranging from

3- to 39-fold for all TFs surveyed in LCLs by ENCODE, except

for the repressor element Ezh2. Enrichment was cell type spe-

cific, again as expected: sequences active only in LCLs and

not HepG2 cells were enriched for DHS sites unique to LCLs

(OR = 2.2, p = 6.63 10�32). Similarly, sequences that were active

only in HepG2 cells were depleted in LCL DHS sites (OR = 0.29,

p = 8.7 3 10�8) compared to all other sites tested (Figure 3C).

Identifying Alleles with Differential Activity
Focusing on those sequences for which at least one allele

affected the expression of the reporter, we identified those that

showed differential expression between the reference and alter-

nate allele (‘‘allelic skew’’). Of the 3,432 active sequences, 842

showed allelic skew; we call these ‘‘expression-modulating var-

iants’’ (emVars) (Table S1). Most of the emVars exhibited modest

expression differences between alleles: only 46 had more than a

2-fold change (Figures 4A and 4B). The changes were, however,
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Figure 4. emVar Reproducibility and Effect-

Size Distribution

(A) Distribution of expression strength (x axis) and

allelic skew (y axis) for all 29k variants.

(B) Cumulative distribution of the absolute differ-

ence of the log2-fold change between the refer-

ence and alternate alleles for emVars (blue), active

variants that were not detected as emVars (green),

and all other variants (red).

(C) Allelic skew as measured by MPRA for 127

positive control values that were discovered in the

original 79k library (x axis) and were tested in the

7.5k library (y axis).

(D) Comparison of allelic skew as estimated from

the mean of two independent LCLs (NA12878

and NA19239). Red points in both plots denote

variants called as emVars from the joint

LCL analysis. Correlation is provided as Pear-

son’s R.
highly reproducible. We randomly selected 127 emVars for

testing in the second, 7.5k MPRA experiment and observed

strong correlation for allelic skew to that of the 79k experiment

(R = 0.97) (Figure 4C). For all 842 emVars, the effect size was

highly correlated between the two LCLs tested (R = 0.92)

and moderately correlated between LCLs and HepG2 cells

(R = 0.63) (Figures 4D and S4A). Concordant with observations

that eQTLs are associated with promoter regions (Veyrieras

et al., 2008), we saw a 13.6-fold enrichment of emVars within

core promoters (+100/�50 bp) relative to our test set of 29k var-

iants and a 113.7-fold enrichment relative to all common varia-

tion (RR = 14.8, p = 2.7 3 10�52 and RR = 113.7, p = 1.2 3

10�121, respectively). Despite this enrichment, many emVars

fell outside promoters, with 59% lying at a distance of 10 kb or

more from the nearest transcription start site (TSS), suggesting

a prominent role for distal regulatory elements.

Like the overall set of active sequences, our emVars were en-

riched for markers associated with regulation, such as TF bind-

ing. We therefore examined whether the presence of allelic

skew correlated with predicted disruption of a TF motif. Of the

emVars that overlapped a ChIP-seq peak for a given TF and

that contained the corresponding TF motif, the predicted

strength of TFbinding (basedonposition-weightmatrices) differs

significantly between alleles in 76% of cases (35 out of 46 had a

difference of at least 3 in log-likelihood binding score based on
the position-weight matrices). This was

4-fold greater than the difference for

active sequences that did not show allelic

skew (OR = 4.1, p = 8.1 3 10�8) and 41-

fold greater than for the non-active se-

quences (OR = 42.7, p = 1.93 10�36; Fig-

ure 5A). The quantitative change in pre-

dicted binding also correlated with the

magnitude of allelic skew observed by

MPRA, supporting a direct relationship

between predicted binding dynamics

and regulatory activity within MPRA

(R = 0.47, p = 6.4 3 10�10; Figure 5B).
Wepredicted that if emVars were true regulatory variants, then

the allele associated with higher expression would also be asso-

ciated with greater chromatin accessibility as measured by DHS

in their native context. By counting the number of DHS reads

attributed to each allele at heterozygous sites in LCLs, we exam-

ined whether there was an allelic skew in DHS status for emVars.

We found that emVarswere significantlymore likely to showDHS

skew than active sequences that were not emVars (OR = 2.5,

p = 0.003). Furthermore, 89% of variants shared the same direc-

tion of effect with a strong correlation in the magnitude of allelic

skew of the emVar activity and the number of reads at DHS sites

(R = 0.78, p = 1.03 10�8; Figure 5C). We also predicted the same

effect would be observed for TF binding as measured by ChIP-

seq. We observed that emVars were more likely to show allelic

skew in the binding of at least one overlapping TF than active se-

quences that were not emVars (OR = 1.9, p = 0.03). For emVars

that showed allelic skew in TF occupancy for at least one TF,

there was a substantial concordance of direction and magnitude

between the allelic skew in TF binding and the allelic skew in ac-

tivity (77% agreement in directionality, R = 0.60, p = 2.1 3 10�7;

Figures S5A and S5B).

Estimating Specificity of the MPRA Assay

We next set out to estimate the specificity of the MPRA assay.

Because many of the variants tested are not actually drivers of

eQTLs, we focused on a set that is likely to be enriched: the
Cell 165, 1519–1529, June 2, 2016 1523
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Figure 5. emVar Concordance with Existing

Measures of Allelic Effect

(A) Proportion of variants by their MPRA classifi-

cation that fall in an ENCODE TF ChIP-seq peak

and contain the predicted motif. Variants are bin-

ned according to the difference in predicted

binding strength between the two alleles. (For

multiple TF associations, the one with the largest

delta is used.)

(B) MPRA skew estimates for LCL emVars with TF

motif/ChIP annotations compared to the predicted

change in binding between the two alleles.

(C) Comparison between skew seen in MPRA and

that in DHS for all emVars passing stringent filters

for high-confidence DHS skew sites (Experimental

Procedures). Skew is calculated as log2(Alt-allele

counts/Ref-allele counts).

(D) Overlap between annotation-positive sites

(Experimental Procedures), sequences detected

as regulatory by MPRA, and emVars.

(E) Proportion of EUR eQTLs explained by an

emVar plotted against the difference in variance

explained between the top variant and the second

strongest association in the EUR eQTL analysis.

Gray line: all emVars; solid red line: annotation-

positive emVars; dashed red line: annotation-

negative emVars.

All Correlations are provided as Pearson’s R.
top-associated variant for each eQTL and all variants in perfect

LD. We carried out analysis on these 11,213 variants from

3,642 eQTLs taking into consideration that only one, if any, of

the variants in each region may be a true regulatory variant and

only a fraction of these may drive transcriptional regulation

discoverable by MPRA.

We observed allelic skew in activity for 27% of the active

sequences associated with an EUR eQTL and 26% of the YRI

variants. In contrast, only 9% of the active sequences for the

location-matched controls exhibited allelic skew, suggesting

that two-thirds of the emVars associated with an eQTL peak

are true causal variants for that peak. Randomly selected con-

trols gave a similar result: 11% of active sequences contained

emVars. Based on these results, we estimate the positive predic-

tive value (PPV) to be 58%–68%. Because the controls were

tested independently in a second library, we were careful to

normalize the tag-counts to match those of the first experiment.

To validate our normalization, we compared the proportion of

active sequences in the two libraries. In the second, 7.5k library,

13.4% of the 500 location-matched and 9.7% of the 2,700

randomly selected controls scored as active sequences,

compared to 12% for the 79k library (Supplemental Experi-

mental Procedures).

As an alternative approach to explore the false discovery rate,

we compared how often the direction of effect agrees between

MPRA and the eQTL analysis. If we focus first on those emVars

that reside in regions biologically annotated as likely to be related

to enhancer function (by virtue of being marked by at least two

of the following: DHS, CAGE, histone ChIP, or TF-ChIP), we

find 80% agreement in directionality, corresponding to a PPV

of 59% (R = 0.61, p = 7.53 10�15; Figures 5D and S5C; Supple-

mental Experimental Procedures). Notably, when we examine
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sites not supported by annotation, we observe a level of agree-

ment consistent with random chance (48%, R = 0.06, p = 0.61).

When we consider all emVars together (regardless of whether

they are annotated as related to enhancer function), the concor-

dance is 67% (PPV of 34% [R = 0.33, p = 4.8 3 10�7]). (We note

that MPRA may not always correctly model the direction or

magnitude of a variant’s effect because the assay isolates a

sequence from potential cofactors that may modify the effect;

this has been observed for the genes yy1 and dorsal [Dubnicoff

et al., 1997; Ip et al., 1991; Shi et al., 1991].) Finally, we explored

whether some of the discordant emVars might represent false

eQTL discoveries by removing the weakest one-third of eQTL

associations; we observed a further increase in agreement for

annotation-supported emVars of 84%, suggesting that false-

positive eQTLs indeed contribute to the discordance.

Estimating Sensitivity of the MPRA Assay

We next estimated the sensitivity of MPRA to identify a causal

eQTL variant when it is present in our study. Based on previous

estimates, we expect the causal allele to be in our enriched set

(top eQTL variant and all variants in perfect LD) 34% of the

time in the EUR population. Given that our assay identified

emVars in 8.6% (273/3171) of eQTL peaks, and 3%–6% after

accounting for false positives, we estimate a sensitivity of 9%–

18% in the EUR population. In the YRI population, lower LD

makes it more likely that a top-scoring eQTL variant will be the

causal allele, an estimated 41%. As expected we observe a

larger fraction for YRI eQTLs with 13.8% (65/471) containing

an emVar, 5%–10% after accounting for false positives, giving

an estimated sensitivity of 12%–24%. When only taking into

account variants supported by functional annotation, the esti-

mated sensitivity is nearly equal by virtue of an increased PPV,

emphasizing the value of filtering MPRA emVars with existing



Table 1. High-Confidence emVars Associated with Known GWAS Loci

GWAS Trait Gene(s)

Sites Tested by MPRA ENCODE and

emVarc Chr Pos (hg19)

r2 with Lead

GWAS SNPAlla ENCODEb emVar

Mean platelet volume KIF1B 26 4 3 rs4240912 1 10437778 0.92

rs6670157 1 10458439 0.92

Wilms tumor DDX1 79 3 1 rs60016948 2 15728544 1

Renal function-related traits PAX8 18 5 1 rs7576384 2 113993385 0.96

Ankylosing spondylitis PTGER4 5 4 1 rs9283753 5 40490609 0.99

Crohn’s disease ERAP2 147 25 2 rs1363974 5 96293816 0.91

Nasopharyngeal carcinoma IFITM4P, HLA-H,HCG4P5,

HLA-J,HLA-G

73 22 5 rs116025516 6 29910189 0.98

Beta-2-M plasma levels HCG27, HLA-L 41 39 1 rs116587107 6 31239227 0.92

Systemic lupus erythematosus BLK, FAM167A 16 14 1 chr8:11353110:D 8 11353110 1

Narcolepsy with cataplexy UBXN2B 12 3 1 rs56316188 8 59323811 0.95

IgG glycosylation B4GALT1 12 5 1 rs12342831 9 33124872 1

Inflammatory bowel disease MAP3K8 31 2 3 rs306587 10 30722908 0.98

Crohn’s disease CREM 241 22 5 rs16935880 10 35415468 0.99

rs4934730 10 35415555 0.99

Body mass index C1QTNF4 26 1 1 rs35184771 11 47475189 0.97

Atopic dermatitis AP5B1, OVOL1 2 1 1 rs10791824 11 65559266 0.91

Mean corpuscular hemoglobin PTPLAD1 60 7 1 rs28640237 15 66070962 0.99

Body mass index, obesity,

weight

EIF3CL, EIF3C, SPNS1,

CDC37P1

137 33 4 rs7198606 16 28875122 1

Parkinson’s disease STX4 50 10 2 rs58726213 16 31044683 0.95

rs11865038 16 31095171 1

Bone mineral density C17orf53 56 15 1 rs227578 17 42210189 1

Coronary heart disease UBE2Z 105 18 8 rs4378658 17 46993370 0.99

Liver enzyme levels (ALP) GINS1, ABHD12 319 45 5 rs2258769 20 25276680 0.99
aAll variants tested in this study by MPRA with an r2 of 0.9 or greater to the lead eQTL variant.
bVariants within the tested subset classified as having strong ENCODE support (Supplemental Experimental Procedures).
cemVars that were classified as having strong encode support.
annotations. The estimate that MPRA can identify the causal

allele for an eQTL for 9%–24% of peaks when tested is in line

with the previous observations that 23%–64% of eQTLs are

driven by promoter or enhancer modifications, the processes

we expect MPRA to capture.

We further performed two alternate estimates for sensitivity

focusingon regionswhere the causal allele is likely to becaptured

in our dataset. We first partitioned peaks based on the difference

in variance (Dr2) between the lead variant (the variant tested by

MPRA) and the second strongest association. The top eQTL

variant is most likely to be causal when the Dr2 is large; accord-

ingly we see an increase of emVars in these regions (Figure 5E).

Modeling this relationship using a logistic regression that also

controlled for the effect size of the eQTL, we derived a sensitivity

of 16%–21%.Second,we identified eQTL peakswhere the same

top-associated variant occurred in both EUR and YRI. Differing

LD structure between the two populations decreases the number

of linked variants and increases the confidence that the top

variant is causal. Of the 34 shared variants, 8 were identified as

emVars, suggesting a 24% sensitivity of MPRA to correctly iden-

tify the causal allele when it is tested. Both orthogonal ap-

proaches are consistent with our initial estimate of 9%–24%.
GWAS-Associated Regions
We next investigated in greater depth regions that were previ-

ously associated with a trait or disease in human studies. For

209 eQTLs overlapping 163 GWAS loci, we tested all alleles

in strong LD (r2 > 0.9) of an eQTL variant, a total of 9,664

variants. We identified 248 emVars in 99 eQTLs (Table S2).

Based on our previous findings, we prioritized the emVars

that also carry annotations associated with an enhancer or

promoter; we identified 53 emVars in 56 eQTLs (a subset of

these, further restricted by LD, is shown in Table 1). This rep-

resents a highly promising set of candidates and greatly

reduced testing burden compared to current approaches.

For example, applying only our stringent ENCODE annotation

criteria identifies 1,302 variants across 171 of the 209 eQTL

peaks.

Candidates identified through MPRA still require experimental

validation. We pursued a striking example, in a distal enhancer

for prostaglandin E receptor 4 (PTGER4). The emVar

rs9283753 sits 190 kb away from the gene and is in strong LD

with the top-associated risk allele for ankylosing spondylitis

(with moderate LD to risk alleles for Crohn’s disease andmultiple

sclerosis) (Figures 6A–6C) (Barrett et al., 2008; Evans et al., 2011;
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Figure 6. emVars Associated with Anky-

losing Spondylitis and SLE

(A) Plot of the PTGER4 locus, which overlaps a

GWAS peak for ankylosing spondylitis displaying

ChIA-PET and ENCODE annotations (top 6 tracks),

observed allelic skew (track 7), and expression

strength (track 8) from MPRA. Significant variants

for expression (blue) and skew (red) in the MPRA

data are indicated by color; black: non-significant.

(B) MPRA expression values of the PTGER4

variant rs9283753 in LCLs normalized to the

plasmid library.

(C) LCL eQTL results in EUR and YRI populations

for the PTGER4 with rs9283753.

(D and E) PTGER4 expression as measured

by qPCR for two LCLs that underwent allelic

replacement at rs9283753.

(F) Plot of the FAM167A-BLK locus associated

with SLE.

(G) MPRA expression values of the chr8:11353110

deletion variant in LCLs normalized to the plasmid

library.

(H and I) LCL eQTL results in EUR and YRI pop-

ulations for the FAM167A and BLK associations.
De Jager et al., 2009). The variant resides in a distal enhancer

clearly defined by strong DHS and H3K27ac marks, with a

CREB motif residing over rs9283753. The allele change is not

predicted to alter binding of CREB, however, and further work

will be needed to elucidate the mechanism of regulation.

To validate the PTGER4 emVar, we used homology-directed

repair with CRISPR/Cas9 to perform allelic replacement. We edi-

ted two cell lines, a homozygous-ancestral (NA12878) and a ho-

mozygous-derived (NA11831) individual for the variant to test the

effect of the allele in a controlled isogenic background. As ex-

pected from the MPRA and eQTL data, switching NA12878 to

be homozygous for the derived allele caused an increase in

expression for PTGER4, whereas the replacement with the

ancestral allele decreased expression of NA11831 (Figures 6D–

6E). The concordant MPRA, eQTL, and CRISPR data support
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the hypothesis that the risk allele is

associated with decreased expression

of PTGER4.

Our finding of a regulatory variant in

the distal enhancer in PTGER4 is consis-

tent with prior observations that identify

elements outside core promoters as

significant contributors to the heritable

component of complex diseases (Farh

et al., 2015; Gjoneska et al., 2015; Parker

et al., 2013). Looking more broadly, the

188 emVars in strong LD (r2 > = 0.9) with

GWAS variants tend to lie further from

promoters than randomly chosen eQTL

variants: 78% (147) reside greater than

10 kb from an active TSS, compared

to 53% for all other emVars. We observed

a corresponding depletion in strongly

linked GWAS emVars within core pro-
moters compared to all non-GWAS emVars (RR = 5.3,

p = 0.0015).

There are many other promising candidates to pursue,

including both a core promoter and intronic emVar in the BLK

locus associated with systemic lupus erythematosus (SLE). The

locus has previously been characterized by Guthridge and col-

leagues, who reported the promoter variant rs922483 (Guthridge

et al., 2014). We replicated this finding via MPRA while also

observing a second emVar within the first intron of the

gene. This is a one-base deletion at chr8:11353110 that intro-

duces a novel NF-kB-binding site. Notably, we found that this

emVAR decreased expression of BLK while increasing expres-

sion of the nearby gene FAM167A and was validated with the

traditional luciferase assay (Figures 6F–6I). Moreover, this em-

VAR is in perfect LD with the top-associated SLE risk variant



among Europeans, rs2618476 (Graham et al., 2008; Guthridge

et al., 2014).

DISCUSSION

Our findings demonstrate that MPRA can be an invaluable

tool for localizing individual causal variants influencing pheno-

typic traits. We have discovered hundreds of variants as putative

causal alleles for gene expression, many of which are linked

to known disease-causing loci. Furthermore we directly

demonstrate causality by allelic replacement of an ankylosing

spondylitis risk allele, rs9283753, which modulates expression

of PTGER4 from a distal enhancer.

Aswith any assay, it is important to understand the limitations of

MPRA. The sensitivity of our current assay, which can identify an

estimated9%–24%of the eQTLcausal alleles, is limited in several

distinct ways. (1) Causal alleles of weak effect may fall below

MPRA’s limit of detection. (2) Regulatory processes may require

additional sequence context not captured on the oligo, for

example, when transcription depends on nearby DNA-binding

co-factor(s) or chromatin structure. (3) Transcription-repressing

effects might be undetectable due to the low basal activity of

the minimal promoter used. (4) Causal alleles may regulate post-

transcriptional events such as mRNA processing and stability.

The first three categories represent limitations of the current

assay design and may be overcome in subsequent iterations

of MPRA. Analysis of the proportion of active variants suggests

that for one-third of the 79k library, we were underpowered

due to a low abundance of the plasmid pool, something that

could be overcome by increased sequencing and library unifor-

mity (Figure S2C). In addition, further improvements, such as

longer oligo sequences to capture greater contextual informa-

tion and the use of a stronger constitutive promoter to detect

repressive elements, may provide substantial gains in sensitivity.

Nevertheless, there is undoubtedly contextual information, such

as long-distance interactions, that will never be captured by an

episomal assay.

One of the largest influences to the current sensitivity is the

substantial role of post-transcriptional effects driving eQTLs;

these are not targeted by our assay. For example, a recent anal-

ysis by Farh and colleagues of eQTL causal variants estimated

that 36% of sites fall within transcripts themselves, and only

23% are attributed to known promoter/enhancer elements, sug-

gesting a substantial role for post-transcriptional activities (Farh

et al., 2015). This implies that, at best, MPRA would have a

maximum sensitivity of 23%–64% for detecting an eQTL causal

allele, as it is not designed to detect variants acting post-tran-

scriptionally. In contrast, the same study reported a very different

picture for autoimmunity GWAS hits: only 19% of causal alleles

fell in transcripts, and 67% resided in known promoter/en-

hancers, with the remainder associated with unannotated non-

coding sequence. The discrepancy in the predictedmechanisms

of eQTL and GWAS causal sites suggests that the sensitivity of

MPRA may well be higher for disease-associated variants than

reported here (Ulirsch et al., 2016 [this issue of Cell]).

Although the sensitivity may be increased through further

technical development, the positive predictive value of 34%–

68% is likely an inherent property of the assay. This suggests
that a substantial segment of the genome has the potential to

change gene expression but is repressed from doing so through

modulating interactions or heterochromatin silencing. Endoge-

nously silenced sequences likely also explain a proportion of

the active sequences we observed by MPRA; we note that

this proportion was unexpectedly high. As a result some vari-

ants discovered by MPRA will be of little biological value.

However, the assay still identifies 1–2 true causal allele for every

3 variants that score, which provides an enrichment and

throughput unparalleled by alternative approaches. Although

MPRA does not prove causality, it does substantially reduce

the test space of alleles linked to a trait locus and provides a

concise list of high-priority targets for follow-up. Furthermore,

the improved agreement with eQTL directionality when subset-

ting those emVars with supporting biological annotation dem-

onstrates the strength of a combined approach when searching

for non-coding causal alleles.

Regardless of the high-throughput approach taken to identify

variants influencing gene regulation, whether it is computational

or experimental, it is critical that the results are interpreted as the

product of a discovery tool and not as a test for causality; this is

a first step in the difficult task of linking a genetic loci to a phys-

iological phenotype. By example, we demonstrate for PTGER4

how we can readily identify and validate an allele that influences

gene expression, and extending this observation further to a dis-

ease causation will require further work. Being able to identify

and validate expression-modulating variants from tens of thou-

sands of sites will ultimately greatly aid in our ability to translate

non-coding regulatory code and will bring us a step closer to the

difficult task of linking human genetic variation to specific pheno-

typic traits.

EXPERIMENTAL PROCEDURES

Variant Selection

To construct the 79k oligo library, eQTLs were identified by reanalysis of the

Geuvadis RNA-seq dataset of LCLs from individuals of EUR and YRI ancestry

(Supplemental Experimental Procedures). We used significance thresholds

corresponding to a 0.1% false-positive rate within permutated samples to

identify 3,642 eQTLs within EUR and YRI. Using the selection and design

criteria described in the Supplemental Experimental Procedures, we included

29,173 variants to test by MPRA. After accounting for both the reference and

alternate alleles, neighboring variants, and in some instances orientation of the

oligo relative to the promoter, we designed a total of 78,956 oligos with the

variant of interest centered within 150 bp of genomic sequence.

The 7.5k oligo library was constructed by selecting variants representing

four different classes: (1) variants called as expression positive in the 79k oligo

experiment; (2) variants called as expression positive and having allelic skew

(emVars) in the 79k oligo experiment; (3) location-matched controls, selected

for being between 250 and 1,000 bp of a lead eQTL association and not in LD

with the lead candidate (r2 % 0.25) and for not having an appreciable eQTL

signal in the Geuvadis or GTEx datasets; (4) randomly selected variants from

across the genome matching only to the minor allele frequency spectrum of

EUR eQTL variants. A subset of the randomly selected variants were further

filtered for having no detectable eQTL signal in the Geuvadis and GTEx data-

sets. The two sets of randomly selected sites behaved similarly by MPRA and

were combined as a single set during analysis.

MPRA

Oligos were synthesized (Agilent Technologies) as 180 bp sequences contain-

ing 150 bp of genomics sequence and 15 bp of adaptor sequence on either

end. Unique 20 bp barcodes were added by emulsion PCR along with
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additional constant sequence for subsequent incorporation into a backbone

vector by gibson assembly (Table S3). The oligo library was expanded by elec-

troporation into E. coli, and the resulting plasmid library was sequenced by

Illumina 2 3 150 bp chemistry to acquire barcode/oligo pairings. The library

underwent restriction digest, and GFP with a minimal TATA promoter was in-

serted by gibson assembly resulting in the 150 bp oligo sequence positioned

directly upstream of the promoter and the 20 bp barcode falling in the 30 UTRof

GFP. After expansion within E. coli the final MPRA plasmid library was

sequenced by Illumina 1 3 30 bp chemistry to acquire a baseline representa-

tion of each oligo within the library.

Libraries were electroporated into LCLs using the Neon system (Life Tech-

nologies). We performed multiple independent replicates for NA12878 (5 rep-

licates) and NA19239 (3 replicates) with each replicate consisting of �5 3

108 cells. Transfections for 5 independent replicates of HepG2 cells were per-

formed using Lipofectamine 3000 (Life Technologies). For both cell types RNA

was harvested 24 hr post-transfection followed by DNA digestion, capturing of

the GFP transcripts, and cDNA synthesis. Sequencing libraries were con-

structed by adding adapters by PCR and sequenced using Illumina 1 3

30 bp chemistry. Detailed experimental conditions as well as oligo and primer

sequences are provided in the Supplemental Experimental Procedures.

Allelic Replacement at PTGER4 Locus

Cas9-GFP vector, guide RNA (gRNA) targeting rs9283753, and a 150 bp ho-

mology oligo with either the reference (C) or alternate (T) allele were trans-

fected into 5 3 106 LCLs. Cells were sorted for GFP expression 24 hr

post-transfection and expanded for 2 weeks in bulk. Single-cell dilutions of

each bulk population were performed and after 2 weeks of growth geno-

typed using Illumina sequencing to identify mutations of interest. All clones

were confirmed by Sanger sequencing. To quantify changes in expression

of PTGER4, qPCR was performed on clonal colonies identified as either

HDR or wild-type. RNA was collected from �7.5 3 106 cells, and cDNA

was synthesized. qPCR was performed with technical triplicates for each

reaction. Detailed transfection and qPCR conditions as well as gRNA,

homology oligo, and primer sequences are provided in the Supplemental

Experimental Procedures.

Data Analysis

The sumof the barcode counts for each oligowithin replicateswas normalized,

and oligos showing differential expression relative to the plasmid input were

identified by modeling a negative binomial with DESeq2 and applying a

threshold of 0.01 for the Bonferroni corrected p value. For sequences that dis-

played regulatory activity, we applied a t test on the log-transformed RNA/

plasmid ratios for each experimental replicate to test whether the reference

and alternate allele had similar activity (Figures S4B–S4E). Combining inde-

pendent results from NA12878 and NA9239 using Fisher’s method generated

a final LCL-specific call set. We used an FDR (Benjamini–Hochberg) cutoff of

5% as a threshold for calling emVars. Detailed procedures for calculating en-

richments, sensitivity/specificity, and concordance with establishedmeasures

of regulatory activity are provided in the Supplemental Experimental Proce-

dures and Table S4.
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